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Figure 1. The SECOND (Sparsely Embedded Convolutional Detection) method pipeline used in 
experimentation as proposed by [1].
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Light Detection and Ranging (LiDAR) sensors have recently become a 
product of interest for autonomous driving, in contrast to cameras, 
because of their ability to collect in-depth 3D data (point clouds) that are 
not impacted by lighting/weather changes. Various detection methods [2] 
have been developed to process this 3D data using machine learning to 
detect objects. However, obtaining and processing the large amount of 
labeled data required for training can be costly. In our research, we 
analyzed the relationship between mean average precision (mAP), the 
amount of data utilized in training, and the time required to perform 
training for car, pedestrian, and cyclist detection.

• Utilized the open-source KITTI dataset [3]
• Collected sample sets with sizes incrementing by 500 up to 

approximately 7,500 frames (15 sets in total)
• Each set is used to train a model with the Sparsely Embedded 

Convolutional Detection (SECOND) method (Figure 1) [4]
• The model was tested on a controlled test set of 7,518 frames
• The mAP for the detected cars, pedestrians, and cyclists were 

calculated from each test
o Mean Average Precision (mAP) is calculated by averaging the 

Average Precision (AP) of each class [2]
• The entirety of the experimentation utilized two NVIDIA GeForce RTX 

2080 Ti GPUs
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• Quality/quantity of the GPUs used for experimentation were not ideal
• Newer datasets are incompatible with the SECOND implementation
• Dataset is small compared to newer datasets
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Point Cloud Visualization

• Sample size becomes insignificant at a certain threshold once mAP
improvement stabilizes (the architecture needs improvements)

• Based on the car data, the optimal number of samples needed to reach 
ideal saturation is approximately 4000 

• Future work may include:
o Further investigation of transferability issues using datasets with 

different camera calibration and physical environments
o Increase mAP with decreasing training set size

Figure 2. The mAP vs the number of cars, pedestrians, and cyclists used in training.

Figure 3. The relationship between frames 
and training time.

Analysis

• As the number of objects used for training increases, the mAP increases 
quickly and levels out

• There were fewer cyclists in the dataset than cars and 
pedestrians, resulting in less improvement in mAP

• The number of each type of object varied in each frame used for 
training 

Figure 5. A sample from the KITTI dataset before (a) and after detection (b). 

Figure 4. The relationship between the number 
of objects and frames used in training.
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• Easy: Min. bounding box height: 40 Px, Max. occlusion level: Fully visible, 
Max. truncation: 15 % [3]

• Moderate: Min. bounding box height: 25 Px, Max. occlusion level: Partly 
occluded, Max. truncation: 30 % [3]

• Hard: Min. bounding box height: 25 Px, Max. occlusion level: Difficult to see, 
Max. truncation: 50 %  [3]


