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Abstract—Predicting short-term traffic volume is essential to
improve transportation systems management and operations
(TSMO) and the overall efficiency of traffic networks. The
real-time data, collected from Internet of Things (IoT) devices,
can be used to predict traffic volume. More specifically, the
Automated Traffic Signal Performance Measures (ATSPM) data
contain high-fidelity traffic data at multiple intersections and
can reveal the spatio-temporal patterns of traffic volume for
each signal. In this study, we have developed a machine learning-
based approach using the data collected from ATSPM sensors
of a corridor in Orlando, FL to predict future hourly traffic.
The hourly predictions are calculated based on the previous
six hours volume seen at the selected intersections. Additional
factors that play an important role in traffic fluctuations include
peak hours, day of the week, holidays, among others. Multiple
machine learning models are applied to the dataset to determine
the model with the best performance. Random Forest, XGBoost,
and LSTM models show the best performance in predicting
hourly traffic volumes.

Index Terms—IoT, Traffic Signal, Arterial, ATSPM, Machine
Learning, Traffic State Prediction

I. INTRODUCTION

Traffic congestion has been an increasing problem seen
in many cities in the world. Florida cities, in particular,
are facing high population and economic growth leading to
challenges such as increased traffic congestion on small roads,
traffic accidents, excessive fuel consumption, among others.
To overcome these issues, reliable traffic prediction methods
are needed. Traffic prediction has been beneficial to adapt
city planning strategies and manage traffic. Knowing how
traffic volume changes over time can help to avoid congestion,
delays in a particular corridor or intersection [1], [2]. In
order to achieve future traffic prediction, traffic behavior data
is collected and analyzed. The analysis of real-world traffic
data has been beneficial to increase the accuracy in models
that help improve traffic networks, save commuters’ time,
and decrease environmental pollution due to increased car
emissions.

Automated Traffic Signal Performance Measures (AT-
SPM) [3] is a high-resolution data-logging capability added to
existing traffic signal infrastructure, Internet of Things (IoT)

devices, and data analysis techniques. It provides transporta-
tion agencies the information needed to identify and correct
deficiencies in traffic signals [4]. ATSPM is an enabling
technology that leverages data collection and analysis for
proactive traffic signal system management. It reports infor-
mation about signals such as traffic lights changes, pedestrian
walk signals, vehicle passing, and so on. The analysis of the
volume of cars dataset, collected by these devices, will be
conducted by multiple machine learning models that will learn
how the non-linear patterns of traffic behave.

This study is based on the ATSPM dataset, acquired from
Seminole County, Florida. The SR-426 corridor, including
nine signals, was chosen to analyze traffic patterns (Figure
1). While predicting hourly traffic, in addition to taking the
last 6 hours of traffic for a particular signal, other factors taken
into consideration included the day of the week, time of the
day, holidays, hurricanes, and precipitation. We used multiple
machine learning models such as multiple linear regression,
KNN, Decision Tree, Random Forest, XGBoost, and LSTM
in our evaluation study.

The contributions of this study include: (i) it analyzes real-
world ATSPM data to predict intersection-level traffic volume
in short term; no study has previously analyzed such IoT
based signal performance data for predictive purposes; (ii)
it develops a data-driven approach for prediction through a
rigorous testing (i.e., the trade-off between interpretability
and accuracy) of multiple machine learning and deep learning
models; and (iii) it provides valuable insights on the perfor-
mance of different models for intersection level short-term
volume prediction using ATSPM data.

II. RELATED WORK

Over the past decade, we have seen advancements in dif-
ferent components of intelligent transportation systems such
as adaptive traffic signal control, automated ramp metering,
etc. Such advanced technologies largely depend on real-time
monitoring and prediction of traffic for a short-term period
[5]. That is why short-term traffic prediction has been a
growing necessity and researchers are exploring different
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approaches to improve the accuracy of such prediction models
[6]. Existing methods to solve short-term traffic prediction
problems can be broadly classified into three groups: math-
ematical, simulation-based, and data-driven methods [1],
[2]. Although several early studies have shown the potential
of mathematical models and simulation-based approaches to
produce solutions of traffic prediction problems [7], [8],
such approaches rely on many assumptions to model traffic
flow behaviors. Consequently, with increasing complexity
and computation time for traffic prediction, these approaches
become less suitable for a real-time application.

In recent years, data-driven approaches have emerged as an
alternative solution to overcome the limitations of traditional
models for real-time traffic prediction applications [2]. Data-
driven approaches can be classified into different ways, such
as parametric and non-parametric models, time series, neural
networks (NNs), parametric regression (ARIMA, Kalman
filter), non-parametric regression, and so on [9]. Some com-
monly used data-driven approaches include support vector
machine (SVM) [10], k-nearest neighbor (KNN) [11], arti-
ficial neural network (ANN) [12], random forest (RF) [13],
and ARIMA [14]. Although these data-driven models perform
reasonably well for most of the traffic prediction problems
(i.e., speed, volume, travel time), their performances dete-
riorate with the increase in non-linearity in traffic patterns
from unexpected events such as crashes or other incidents
leading to a sudden drop in traffic flows [15]. To overcome
these challenges, neural computation based deep learning
models [16], [17] were introduced in traffic prediction.

However, one of the issues with such complex models
is that for a simple traffic prediction problem, they tend to
overfit the data. Moreover, these models use a high number
of parameters, resulting in models being less interpretable
and more difficult to select appropriate hyper-parameters.
Thus one of the main challenges in developing a data-driven
model is to select an appropriate model for a specific task.
Existing applications of these data-driven models mostly in-
volve predicting traffic stats such as speed, volume, and travel
time using data from roadway detectors (i.e., freeways and
arterials) such as microwave radar detectors, loop detectors,
and so on [17], [18]. Few studies have explored adopting a
data-driven approach for solving intersection-level short-term
traffic volume prediction problem [19], [20].

III. METHODOLOGY

A. Data Collection

High-fidelity data collection at intersections has created
an opportunity to deal with more complex problems in
transportation. The proper analysis of this data can reveal
important information about real-world traffic flow and allow
for possible traffic forecasting in networks at intersection
levels. There are multiple sources from which traffic move-
ment data can be collected, stored, and accessed. According
to the selected study site of Seminole County, most of the
signalized intersections are equipped with advanced traffic

Fig. 1. Selected Study Corridor.

signal controllers on the arterials, and each signal provides
Automated Traffic Signal Performance Measures (ATSPM).
ATSPM is an enabling technology that contains real-time
and historical performance at signalized intersections. This
technology encodes events that occur on traffic signal con-
trollers with high-resolution data loggers; the time resolution
is to the nearest 100 milliseconds [21]. The ATSPM data
was collected for a selected corridor in Seminole County,
nine signals in State Road 426, for 2016 and 2019 (Fig. 1).
The data collected would allow us to calculate traffic volume
at each intersection with the straight/through movement and
create a machine/deep learning model to forecast future traffic
volume at selected intersections based on previous hours. All
events related to left-turn and right-turn were not considered
for traffic volume at an intersection due to all signals not
having data available for all movement types and directions
in the ATSPM dataset. Straight/through traffic movements are
present for all the signals in the selected corridor.

B. Data Processing

To calculate traffic volume at each intersection within the
selected corridor before creating the models, the data was first
filtered to remove any irregularities seen, such as detector
malfunctioning, false encoding during storing the data into
the server, duplicate entries, bad weather conditions, etc. To
validate the quality of ATSPM data from selected signalized
intersections, we compared the ATSPM data to the one-day
Turning Movement Counts (TMCs) available from the Florida
Department of Transportation (FDOT). Since the TMCs from
the SR426 & Dean Rd are not available, we compared the
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other 8 signalized intersections. The TMCs were manually
counted at different intersections at peak hours, which can
be the ground truth of traffic volume. Compared to TMCs,
we can collect ATSPM data in a more efficient way and on
a larger scale. To evaluate the performance, we applied the
GEH statistic as an evaluation metric. The formula of GEH
statistic is given below:

GEH =

√
2(M − C)2

M + C
(1)

where M is hourly traffic volume estimated from ATSPM data
and C represents the Turning Movement Count. For evalu-
ating traffic models, compared to the “baseline” scenario, a
GEH of less than 5.0 is considered a good match between
the modeled and observed volumes. The GEH value was less
than 5 for 85% of the data points, which matches standard
values recommended [22]. From the GEH statistic, all scores
above 10 were removed for each volume of traffic because it
is counted as nonreliable data points.

After cleaning the dataset, the hourly volume was cal-
culated for each selected intersection by filtering out all
other movements included in the dataset. In this study, only
the through northbound or upstream movement in the cor-
ridor was considered. It is important to highlight that non-
motorized traffic was not taken into account and that only
selected signals have ATSPM data being collected.

C. Factor Selection

From a preliminary analysis of the traffic patterns seen in
the hourly traffic for the intersections, it became evident that
multiple factors play roles in the fluctuation of traffic flows. A
spatio-temporal analysis was made for potential factors that
affected the volume per hour in the selected location. The
factors seen to play an important role in the drastic fluctuation
of traffic volumes per hour included: day of the week, the hour
of the day, holidays, and occurrences of hurricanes and/or
precipitation. The definite selection was made for when a
clear difference was seen in the volume of cars per hour for
each factor in each signal (Fig. 2).

• Day of the week: weekday or weekend
• Peak hours: 5:00 AM to 10:00 AM and 3:00 PM to 7:00

PM
• Holidays: Easter, Memorial Day, Independence Day,

Labor Day, Halloween, Veteran’s Day, Thanksgiving,
Black Friday, Christmas, New Year’s Eve, and New
Year’s Day

• Hurricanes: Hurricane Matthew and Harmine (2016) and
hurricane Dorian (2019)

• Precipitation: collected from the closest weather station
from the corridor (Sanford International Airport). Pre-
cipitation events higher than 30 mm/hr is considered as
major precipitation event for the analysis

D. Model Exploration

Once all the hourly volumes were aggregated for the signals
selected for the years 2016 and 2019 and their respective

Fig. 2. Factors affecting traffic - signal 1.

factors for each hour, a predictive model was built to predict
the hourly volume for each signal based on the previous
6 hours of traffic volume and factors. Multiple algorithms
were used to predict the hourly traffic. Since traffic contains
nonlinear characteristics, multiple types of models were tested
to see which one demonstrated the best fit to the dataset. First,
simple models were applied: Multiple Linear Regression and
Decision Tree. From these, more complete and complex
models were applied to the dataset: Random Forest, KNN, and
Extreme Gradient Boost (XGBoost). Finally, because of the
constant growth of deep learning models in traffic applications
due to their success in learning patterns, the Long Short Term
Memory (LSTM), a highly effective deep learning model in
predicting time series was also applied.

For model training for volume prediction of each signal
selected in the corridor, the data was split randomly into
training and testing sets such that; the training data consisted
of randomly selected 75% of the dataset and the testing data
consisted of the remaining 25%. After the data is itemized
as 6 hours of consecutive time series, they are shuffled for
better training. Each model attempted to learn and recognize
traffic patterns from the past 6 hours of traffic volume and
given factors and predicted the next hour’s traffic volume. The
testing data was used to evaluate the prediction performance
of trained models by comparing them with the actualized
values of traffic volume.

E. Hyperparameter Tuning

For all the machine learning models, the default embedded
hyper-parameters in each model were used and some param-
eters were changed to find the optimal conditions in which
the hourly volume of traffic was predicted the best. The best
performing parameters that were changed for predicting the
hourly volume for each model can be found in Table I. The
grid search method is applied to determine the optimal param-
eters for Multiple Linear Regression, Decision Tree, Random
Forest, KNN, and XGBoost. Exhaustive search is applied
for the most relevant parameters for each algorithm and 5-
fold cross-validation across training data is incorporated to
prevent over-fitting of the parameters. For the LSTM model,
experimentation and intuition are used to select parameters,
as the search space of hyper-parameters for the deep learning
models is long.
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TABLE I
OPTIMAL HYPERPARAMETERS DISCOVERED FOR MACHINE AND DEEP

LEARNING MODELS

Model Optimal Parameters
Linear Regression normalize = True
Decision Tree criterion = ’mae’

max depth = 7
Random Forest max depth = Auto selected w.r.t min sample splits

min samples split = 8
n estimators = 99

KNN algorithm = ’auto’
weights = ’distance’
n neighbors = 17

XGBoost booster = ‘gbtree’
max depth = 12
learning rate = 0.3
min split loss = 0
n estimators = 100

LSTM number of LSTM hidden layers = 1
number of nodes per layer = 15
loss = ‘mse’, optimizer = ‘adam’
epochs = 120, batch size = 72

IV. PERFORMANCE EVALUATION

A. Performance Measures

To determine which of the six models performed the best,
we compared their Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and R-squared (R2) scores. MAE
is the performance metric that checks the accuracy of the
implemented model. Absolute error is the difference between
the predicted values and the “true” value; the MAE is the
average of all absolute errors. The MAE equation is as follows
where ŷi is the prediction and yi is the true value:

MAE =
1

N

N∑
i=1

|ŷi − yi| (2)

RMSE is defined as the standard deviation of the residuals
as it indicates how concentrated the data is around the line of
best fit. In general, the smaller the RMSE value is, the better
the model. The RMSE equation is as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (3)

The coefficient of determination or R-squared (R2) is
defined as the comparison of the residual sum of squares with
the total sum of squares. It represents the goodness of fit of
a regression model. The closer the value of R-squared to 1, 1
representing the perfect predictor, the better the model. The
R2 equation is as follows:

R2 = 1− SSRegression

SSTotal
= 1−

∑
(yi − ŷi)

2∑
(yi − ȳ)2

(4)

Fig. 3. Comparison of MAE values for each model built for the nine signals.

B. Model Applications

The five machine learning and one deep learning models
were trained with the gathered hourly volumes of traffic and
corresponding factors such as peak hour, precipitation, and
so on for 2016 and 2019. Each model performed differently.
As seen in (Fig. 3) and (Fig. 4), the MAE and RMSE values
were displayed and compared for all nine signals. To put the
MAE and RMSE values in perspective, the lowest number of
vehicles per hour is 0, and the highest number is between two
and three thousand. Since the MAE and RMSE values range
anywhere between 40 and 160, all the models performed
well except the linear regression model. The linear regression
model distinctively performs worse than other models (Fig. 3)
and is not a good predictive model for the dataset as the traffic
data is highly non-linear. MAE values for all the models
can be seen in Fig. 3. As seen in Fig. 4, multiple models
performed better than others: Random forest and XGBoost.
A similar pattern is observed in Fig. 5, where R2 values
are compared. Looking at the ranges of R2 values, all of
the models but linear regression performed exceptionally.
Again, Random Forest, XGBoost, and LSTM have performed
consistently superior compared to the other three models.
These results are consistent with our expectations as the
aforementioned three models are more suitable for modeling
highly non-linear data in which the traffic volume falls.

Taking a closer look at randomly chosen signals 1, 5, and
8, actual vs. predicted graphs are plotted and it can be seen
visually how accurately Random Forest, XGBoost, and LSTM
predicted the hourly vehicle volume in Fig. 6. As one can see,
the more concentrated the data points around the y = x line
(the red line), means the better the model predicted hourly
traffic volume. In all three models, their data points are all
located tightly around the red line.

Compared to the best performing three models, Multiple
Linear Regression, KNN, and Decision Tree did not perform
well; this suggests that those models took a simpler approach.
For multiple linear regression, it performs the worst; this is
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Fig. 4. Comparison of RMSE values for each model built for the nine signals.

Fig. 5. Comparison of R2 values for each model built for the nine signals.

because this type of model establishes a linear relationship
between the independent variables and the dependent variable,
but the underlying patterns lean more towards a non-linear
relationship. KNN uses ‘feature similarity’ to predict the
values of any new data points. This means that the new
point is assigned a value based on how closely it resembles
the points in the training set. This algorithm is one of the
simplest algorithms in general, but it does not recognize or
learn traffic patterns. Lastly, the Decision Tree algorithm is
a great algorithm to use, but Random Forest and XGBoost
utilize multiple decision trees rather than just one, taking it
one step further. Although LSTM is highly capable to learn
non-linear patterns and achieves a high R2 score, it is not the
best performing model. One of the advantages of LSTM is
to capture patterns in long time series of data so the last 6
hours of data might not be enough the realize the power of
LSTM. Another requirement for best performance for any
deep learning model is a large amount of data and even
though two years of data can be considered large enough
for other machine learning models, deep learning models are
data-hungry and potentially improve with more data.

V. CONCLUSION

In traffic control systems, accurate volume prediction is a
critical component to ensure efficient traffic operations at an
intersection and/or corridor [1]. Traffic models have been
consistently developed to predict volume with real data and
it plays major roles in planning and management techniques
in traffic controls [5]. Machine learning techniques have
become more popular in this field, their demonstrated ability
to capture sharp discontinuities in traffic flows using nonlinear
functions (e.g., tanh, sigmoid) or yes/no decision mechanism
[18]. These models have displayed their ability to learn the
task of predicting traffic volume from past data, which is
especially important and difficult due to the high complexity
and dimensionality of the traffic patterns [15]. More complex
machine learning models, as well as deep learning models,
were demonstrated to capture the non-linearity of traffic
data. Models such as random forest, XGBoost and LSTM
outperformed other models when calculating the volume at an
intersection. Other models such as KNN, decision tree, and
multiple linear regression, are simpler models that although
had a prediction potential, did not predict the traffic volume
as well as more complex models.

It was proven possible to predict the hourly volume of
traffic with the best three models selected based on a 6-hour
pattern of traffic volume attached to some critical factors with
these models applied. These factors made a substantial impact
on the analysis and prediction of traffic volume. Each factor
was seen as significant in the fluctuation of traffic volume,
and it helped the machine learning models to account for the
sharp changes seen in the data set. These numerous factors
show the higher dimensionality of the traffic volume pattern.

The predictions were possible due to big data sets from
IoT devices in real traffic signal systems. Correctly analyzing
data sets was essential in improving the current system and
getting ready for future city planning and management.
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