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ABSTRACT

Impacting drops are ubiquitous and the corresponding impact force is their most studied dynamic quantity. However, impact forces arising
from collisions with curved surfaces are understudied. In this study, we impact small cups with falling drops across drop Reynolds number
2975–12 800, isolating five dominant parameters influencing impact force: drop height and diameter, surface curvature and wettability, and
impact eccentricity. These parameters are effectively continuous in their domain and have stochastic variability. The unpredictable dynamics
of the system incentivize the implementation of tools that can unearth relationships between parameters and make predictions about impact
force for parameter values for which there is not explicit experimental data. We predict force due to the impacting drop in a concave target
using an ensemble learning algorithm comprised of four base algorithms: a random forest regressor, k-nearest neighbor, a gradient boosting
regressor, and a multi-layer perceptron. We train and test our algorithm with original experimental data comprising 387 total trials using
four cup radii with two wetting conditions each. Our approach permits the determination of relative importance of the input features in pro-
ducing impact force and force predictions which can be compared to scaling relations modified from those for flat targets. Algorithmic pre-
dictions indicate that deformation of the drop and surface wettability, often neglected in scaling for impact force on flat surfaces, are
important for concave targets. Finally, our approach provides another opportunity for the application of machine learning to characterize
complex systems’ fluid mechanics for which experimental variables are numerous and vary independently.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0116795

I. INTRODUCTION

The impact of a raindrop on skin is perceptible, in part not only
because of its temperature but also because it imparts a force large
enough to be sensed. Impacting drops are ubiquitous and their impact
force may be their single most studied dynamic quantity.1–17 Impact
force has been measured with piezoelectrics, accelerometers, and canti-
lever beams. Despite the number of studies characterizing drop impact
force, the surfaces used in studies are flat and horizontal, with few
exceptions.1,4 In a recent review article on liquid drop impact force,
Cheng et al.2 identify inclined surfaces as an area for future work. In
this experimental and computational study, we measure the impact
force and film the impacts of falling drops into spherical, concave cups
with radii of curvature on the same order as the drop. Drops impact
with a Reynolds number Re ¼ qDU=l ¼ 2; 975� 12; 800, where

density q ¼ 1 g/mL, impact velocity U �
ffiffiffiffiffiffiffi
2gh

p
, D is the drop diame-

ter, and the assumed drop dynamic viscosity l ¼ 1 cP. Drops are
released from the rest at a height h and fall under gravity g¼ 9.81 m/
s2. Our cups are inspired by splash cup plants of Chrysosplenium and
Mazus that employ a conical shape to amplify the speed of raindrops
to disperse seeds.18,19 Drops which impact the cups off center attain
the greatest dispersal distances at speeds up to five times faster than
the oncoming drop. In contrast, our impacting drops remain in
their spherical cups. Beyond the impact of drops on concave plants,
the force imparted by drops is useful to characterize for sensors,
erosion,20,21 and water capture.22,23

From a high-level perspective, the force of impact is a direct
result of how, and over what timescale, the momentum of a drop is
arrested, redirected, and dissipated.2,8 After first contact on a flat
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surface, impact force rises quickly and reaches a maximum when the
drop equator meets the substrate.2 After its peak, impact force decays
more gradually than it rose, resulting in an asymmetric impact curve.
How temporal impact curves manifest for substrates with curvature
on the order of drop diameter is unknown. Impact force arises from
momentum redirection and drop deformation, to include breakup,
and is governed by drop size and speed, surface tension, viscosity, sur-
face orientation, texture, compliance,24,25 and advancing contact angle.
Not only is this list perhaps incomplete but also stochastic effects fur-
ther complicate repeatability in instances where exact impact location
and drop shape are critical. Many variables governing impact force
exist on a continuum and are difficult to precisely control, and, thus,
determining a reliable empirical relation through full factorial experi-
mentation is a campaign of intense devotion despite the straightfor-
ward nature of trials. Moreover, our experimental system provides the
added challenge of limited optical access to the impact zone. Drop
dynamics can be measured prior to impact, but the impact itself is
obscured from view.

Modern algorithmic tools provide an opportunity to reveal vari-
able relations and dominance in places where tedious experimental
campaigns may fail. With a sufficient amount of experimental data,
machine learning tools are brilliant in prediction of experimental out-
comes, in this case, impact force F, for a vast array of input variables
that have not been tested. While machine learning tools have been
applied to fluid mechanical systems,26–28 their application to labora-
tory experiments in fluid dynamics is relatively limited. A recent
example of using machine learning to describe drop experiment data
is that of drop impact onto cantilevered fibers.29 Algorithm predictions
confirmed scaling relations that suggest the maximum deflection of a
fiber impacted on its tip by a falling drop is nearly independent of
drop momentum. In another study, machine learning was used to pre-
dict the inertial force required to eject drop from flexible, millimetric
cantilevers.30 The cantilever drop system exhibits complex dynamics
because drops slosh, relocate, and damp vibration.31,32

We present our experimental and computational approaches in
Secs. II and III, respectively. A scaling relation for impact force as a
function of system variables is developed in Sec. IV for use in inter-
preting algorithmic outputs. We discuss outputs and predictions made
by our chosen algorithms in Sec. V and conclude our work in Sec. VI.

II. EXPERIMENTAL APPROACH

Our experimental apparatus used to measure impact force is
shown in Fig. 1. Nozzles are positioned at 141 unique heights h rang-
ing from 50 to 494mm along a 165-cm tall 80/20 1530 extrusion tower
affixed to a 30 � 60 optical slab (Nexus, Thor Labs, Newton, NJ). Drop
heights were selected such that we get a reasonable range in impact
velocity but drops reliably strike within cups. Water is pumped to the
nozzle by a syringe pump (New Era NE-1010, Farmingdale, NY). Five
straight cut needles with outer diameters of 0.5–1.5mm are used to
form drops 2.3–4.4mm in diameter. Our drop heights do not allow
drops to reach their terminal velocity. Drops impact polyacitide (PLA)
‘cups’ manufactured by a three-dimensional printer (Flashforge
Creator Pro, City of Industry, CA). A cross-sectional diagram of our
cups is shown in Fig. 2(b). The tallest cup post is 20mm high and has
a cup radius of 5mm. Cups with larger radii r have their bottom posi-
tioned 5mm below the top of a 20mm high virtual cup. Sketches for
each cup showing all pertinent dimensions are given in Fig. S1 of the

supplementary material. Cups are adhered to a force gauge
(MARK-10 Series 7 M7–012, Copiague, NY) with cyanoacrylate. The
force gauge records force readings at 14 000Hz. A example of the force
gauge’s digital output can be found in Fig. S2 of the supplementary
material. The cup rigidly fixed to the gauge [Fig. 2(a)] behaves as a
highly underdamped oscillator and we, thus, take the maximum force
value of the gauge output as the measure of impact force F. Impacts
are illuminated by LED lights (GS Vitec MultiLED LT, Bad Soden-
Salm€unster, Germany) and filmed with a high speed camera (Photron
AX-100, Tokyo, Japan) at 6400 fps. A mirror set at 45� to the lens
provides an orthogonal view for quantifying impact eccentricity. Cups
are dried with an absorbent cloth between trials.

Videos are analyzed with MATLAB (Mathworks, Natick, MA).
From our videos, we measure drop diameter D and the lateral distance

FIG. 1. Schematic of the experimental setup.

FIG. 2. (a) Photographic and (b) schematic representations of the experimental
system.
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from the center of the cup to the center of the drop a. The measure-
ment of a requires both impact views. Offset is limited such that the
entirety of the drop remains in the cup, a < 5mm� D=2 for
r¼ 5mm and a < 6mm� D=2 for r¼ 10, 15, and 20mm. We non-
dimensionalize offset as e ¼ a=r and report the range of values in
Table I but do not use this ratio in our algorithm. Two wetting condi-
tions are trialed. The first uses untreated cups, naturally hydrophilic
(W¼ 0), with static and advancing contact angles of 77:561:1�

(N¼ 3) and 94:762:5� (N¼ 3), respectively. For the second, we spray
cups with NeverWet to create a hydrophobic condition (W¼ 1), with
static and advancing contact angles of 147:765:8� (N¼ 3) and
151:363:2� (N¼ 3), respectively. Our experimental parameters are
listed in Table I. Our experimental campaign aimed to capture as
many trials as time would allow with roughly equal numbers of trials
for each cup. Initially, the number of data points for each of four cups
ranged from 108 to 132, totaling 476. Data were filtered for eccentrici-
ties too large to contain the entire drop, reducing unique data points
to 387 with a range of 86–110 per cup. No replicates were performed
for two reasons. The first is that true replicates are impossible, owing
to deviations in drop size and impact location. The second is that
machine learning algorithms are best trained with the largest combina-
tions of unique inputs.33

III. ALGORITHMIC APPROACH

Experimental parameters listed in Table I are supplied to
machine learning algorithms to build a regression model for impact
force. Since the output of the prediction model is a continuous vari-
able, F in our case, the prediction problem in this work is a regression
problem. A set of base learners is, thus, formed of regressors: Random
Forest Regressor (RFR), k-Nearest Neighbor (KNN), the Multi-Layer
Perceptron (MLP), and the Gradient Boosting Machine (GBM). These
four are well-known learners and frequently used in regression prob-
lems. We implement the ensemble using the Scikit-learn library, a free
machine learning library for Python programmers.34

The performance of any regression problem critically relies upon
the selection of the algorithm(s).29,30,35 In general, the selection of the
base learner set35 is guided by data distribution and a bit of trial-and-
error.RF andGBM excel with datasets having a high degree of nonlin-
earity and complex relationships between variables and are truly
ensembles within themselves. RFR uses bagging (bootstrap aggregat-
bootstrap aggregating)36 and GBM using boosting. The key difference
between bagging and boosting is that boosting trains its internal base
learners to build each decision tree sequentially rather than

independently, calculating the average of tree outputs at the end. Each
internal base learner within a GBM is dependent on the previously
trained base learner. TheMLP is a multilayer neural network with full
connectivity between the layers, usually trained with backpropagation.
Training an MLP requires adjusting model parameters to minimize
prediction error. The use of KNN is motivated by small data size and
small number of features. For more details on the aforementioned
learners, we direct the reader to Orkweha et al.29

Ensemble learning combines the outputs of base learners to
achieve a more accurate prediction than constituent base learners by
lowering error and cross-fitting,37 when individual base learners are
selected properly.38 The four aforementioned base learners are com-
bined by a bagging regressor, a combination of bootstrapping and
aggregating. The implementation of both bagging and boosting techni-
ques improves the accuracy of our predictive model by providing vary-
ing sampling methods. Our ensemble learning implementation
method is schematized in Fig. 3. The prediction of each base learner is
multiplied by an assigned weight before a summation forms the final
prediction.39

Assigned weights are determined by the non-negative least
squares (NNLS) method such that the final prediction has the lowest
possible error given each base learner’s prediction accuracy. Regardless
of the distribution, the weights always sum to 1. NNLS was first intro-
duced by Lawson and Hanson,40 as

min f ðaÞ ¼ 1
2
k Sa� bk2;

subject to aP 0;
(1)

where S is the training set such that S 2 Rm�n with m features and n
number of observations, a is a weight vector, and b is the unknown
sample. The NNLS method is implemented after training each base
learner with tenfold cross-validation with shuffle which produces
ten sets of predictions from each member. k-fold cross-validation is a
technique in which the algorithm is trained k times with a fraction 1=k
of training examples omitted for testing.41 The weight vector a is dis-
tributed among the constituent learning algorithms and predicted

TABLE I. Experimental parameters.

Parameter Range
Mean value

for predictions

Radius of curvature, r (mm) 5, 10, 15, 20 � � �
Drop height, h (mm) 50–494 238
Drop diameter, D (mm) 2.3–4.40 3.24
Offset, a (mm) 0.29–4.51 2.5
e (�) 0.03–0.71 � � �
Wettability,W 0, 1 0
Impact force, F (mN) 2.4–70.4 21.77

FIG. 3. Computational framework of ensemble learning for impact force prediction.
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values Pr from each base learner are multiplied by a their respective a
value and aggregating products to generate a final prediction

PrðensembleÞ ¼ aRFPrðRFÞ þ aKNNPrðKNNÞ þ aMLPPrðMLPÞ
þ aGBMPrðGBMÞ: (2)

IV. SCALING IMPACT FORCE

Between the moment the drop makes initial contact with the cup
and the moment of greatest drop spreading, a maximal impact force F
is measured. Due to limitations in viewing angles in a concave, opaque
cup, the progression of drop shape and its connection2 with temporal
force is difficult to obtain optically. The force of an impacting drop
arises from the force of impact pressure Fi and the reaction force to
deform the drop Fs, as shown previously4 and we expect both to be of
importance to current impacts. The impulse of drop impact, thus,
takes the form:

m U � U 0ð Þ ¼ Fi þ Fs þmgð ÞDt; (3)

where U 0 is the vertical velocity of the fluid mass post-collision, to
include the velocity of any mass redirected upward by the curved cup,
m ¼ qpD3=6 is drop mass, and Dt � D=U is the impact time.
Quantification of U 0 for every impact scenario is intractable, and so
we write F � Fi þ Fs þmg.

For horizontal flat surfaces, the incoming drop’s velocity contrib-
utes to an impact pressure �qU2=2. Since pressure acts normal to a
surface, those on an incline require the normal component of drop
velocity Un to scale impact pressure. For the sake of scaling, we assume
the reaction of a eccentric impacts in our cups produces forces equiva-
lent to impacting a flat surface with the same inclination as the cup at
the impact location. Normal velocity at the point of impact can then
be written Un ¼ Uð1� e2Þ. We now define a Weber number that
assumes drops release from rest and incorporate eccentricity as

Wen ¼ qU2ð1� e2Þ2D=r � 2qghð1� e2Þ2D=r; (4)

where the surface tension of the liquid is r. The force arising from
momentum is concisely formulated by Soto et al.12 and which our
modification for normal velcoity is written as follows:

Fi � qU2
nD

2 � qghð1� e2Þ2D2: (5)

Deformation of the drop increases surface energy, and we expect
the related force Fs � rv, where v is the maximal equivalent diameter
of a spreading drop as it impacts. Since we cannot visualize the extent
of spreading of our drops, we rely on a relation by Scheller and
Bousfield42 for impacts on flat, dry surfaces that do not recoil or
rebound, v=D ¼ 0:61ðWe=OhÞ0:166, where We ¼ qU2D=r and the
Ohnesorge number Oh ¼ l=ðqrDÞ1=2. We believe the Scheller and
Bousfield relation holds for our dry, curved cups with a modification,
but likely with a different scaling constant. We modify their relation
by replacing the classical Weber number with Wen, such that
v=D � ðWen=OhÞ0:166. Now Fs can be written as follows:

Fs � rDðWen=OhÞ0:166: (6)

Combining Eqs. (3) to (6), we can write an expression for dimension-
less force,

F
mg
� 6r

qgpD2
Wen þ

Wen
Oh

� �0:166
" #

þ 1; (7)

which permits F � mg when h¼ 0. Unpacking dimensionless groups
in Eq. (7) takes the following form:

F
mg
� 6r

qgpD2

2qghð1�e2Þ2D
r

þ 2gh
l

q3D3

r

� �1
2

ð1�e2Þ2
" #0:1668<

:
9=
;þ1:

For the sake of curve-fitting and because Eq. (7) has implicit scal-
ing coefficients in the first two terms on the right-hand side, we may
rewrite Eq. (7) in terms of only the parameters which are variable in
our experiment

F
mg
¼ C1

hð1� a2=r2Þ2

D
þ C2

hD
3
2ð1� a2=r2Þ2

� �0:166
D2

þ 1: (9)

We use Eq. (9) with experiential data and model predictions in
Sec. VB.

V. RESULTS AND DISCUSSION
A. Algorithm performance and importance scores

We impact concave cups with falling water drops to record the
maximum impact force recorded by a high-frequency force gauge.
Inputs to each trial, h, D, a, r, and W, and output F are passed to the
ensemble algorithm described in Sec. III for training and testing. The
choice of using h as a parameter over the arguably equivalent U is a
matter of measurement error across hundreds of trials. In short, deter-
mination of U is prone to more measurement error. Before merging
base learners into an ensemble, we resolve the optimum parameters
for each base learner by the grid search method. Optimum parameters
are shown in Fig. S3 of the supplementary material. The predictive
models are trained to predict impact force and employ tenfold cross
validation to verify model performance.30 The predicted vs observed
impact force is plotted for each base learner in Fig. 4, with root-mean-
square-error (RMSE) values printed in Table II. No individual base
learner stands out as vastly superior. The ensemble improves RMSE
by 15.7% compared to the best base learner, RFs.

The NNLS problem of Eq. (1) is solved to assign weight to the
prediction of each base learner according to Eq. (2). Regression error
characteristic (REC) curves are used to visually compare the perfor-
mance of individual base learners against the ensemble in Fig. 5(a).
RECs show the accuracy of a regression model by comparing it against
the absolute deviation. Superior predictions come from models which
reach 100% accuracy at a smaller value of error tolerance. Simply put,
curves which bound more area under the curve (AUC) have less error.
Predicted impact force is plotted against measured impact force for
the ensemble in Fig. 5(b).

The trained algorithm assigns a parameter “importance score” to
each input variable that represents the relative influence, with respect
to one another, of each parameter on the recorded impact force.
Importance scores are independent of base learners and are found by
measuring the decline of model accuracy when shuffling a parameter’s
value.43 Importance scores are shown graphically in Fig. 6. Our algo-
rithm predicts that the height h of drop release, the driver behind
impact velocity, is the single most dominant parameter contributing to
impact force. The importance of h is surprising when compared to the
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importance score of D, which is nearly half. For flat surfaces,
F � qgD2h, and so we might expect the scores for D to be a more
important contributor to force in our problem. However, and as we
discuss more below, importance scores cannot be read blindly.
Importance scores are produced by shuffling each variable and quanti-
fying the error in the prediction vs the measured output, force in this
case. In our experiments, we vary D by a factor of 1.9 and h by a factor
of 9.9. We, thus, find no surprise that h appears to have such a greater
influence on impact force. We would expect these two importance
scores to be dramatically different with respect to one another if we
modulated D by a factor of 10.

Of lesser but still significant importance is a, a score intimately
tied to the magnitude of r. In the limit of very large cup radii, a will

have negligible importance. The variables r andW have a small num-
ber of discrete values, four and two, respectively. Thus, when a param-
eter is shuffled, there is a significant chance a parameter value is
effectively unchanged. In these cases, the model does not have error
contributed by these shuffled parameters and the corresponding
importance score is low. Thus, if r and W had a comparable number
of discrete values as the others, we would expect their importance
scores to be significantly higher. The importance of r andW is assessed
by a different means below. WettabilityW does not appear in Eq. (9),
and the effect of wetting on temporal or maximum impact force has
not been characterized in the literature to the authors’ knowledge.2

B. Model predictions of force

The nature of our experimental data, purposefully randomized
for input into ensemble learning, does not permit the visual validation
of Eq. (9). However, using all our experimental data, we run a global
optimization scheme to find C1 and C2 values which permit Eq. (9) to
provide a calculation of impact force with the least amount of error.
The lowest RMSE between experimental F/mg and that predicted by
Eq. (9) is 50.9 or 38% the mean value of experimental F/mg, with
C1 ¼ 1:0 and C2 ¼ 224:7. Here, C1 is dimensionless and C2 has units
[mm�0.083]. If we run the optimization scheme on Eq. (9) with
C2 ¼ 0, the optimal C1 ¼ 1:9 with RMSE ¼ 58:4.

FIG. 4. Observed vs predicted impact force (blue points) for (a) RFs, (b) KNN, (c) MLP, and (d) GBM algorithms. Predictions which match observations exactly fall on the red
diagonal, included for visual reference.

TABLE II. Performance of the predictive models of impact force.

Algorithm a RMSE (mN)

RFs 0.546 3.38
KNN 0.154 3.94
MLP 0.056 4.32
GBM 0.244 3.69
Ensemble � � � 2.85
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We can use Eq. (9) to fit algorithmic predictions in which we
vary only one variable at a time. From Eq. (9), we expect F to increase
with h, D, and r and decrease with a. Surface tension, which governs
the force required to deform a drop, appears in the second term of
Eqs. (7) and (8), �r0:92. While we do not change surface tension in
our experiments, we expect impact force to increase with surface ten-
sion as drops behave more solid-like.

We employ our trained algorithm to predict impact force in
which we can isolate an independent and dependent variable (F). Such
an exercise can be performed for any combination of input variables.
For simplicity, all invariant inputs are set to their experimental aver-
ages, across all trials, reported in Table I. We plot predictions for F/mg
across variable D, with h, a, andW¼ 0 fixed in Fig. 7(a), producing a
curve for each experimental cup radius. F/mg generally decreases with
increasing D, as expected from Eq. (9). Likewise, F/mg is predicted to
increase with cup radius. With offset a fixed at �a ¼ 2:5 mm, an
increasing cup radius r decreases impact eccentricity e, thereby
increasing Wen and F/mg. A further simplification to Eq. (9) may be

done by lumping all constant terms for a particular curve in the pre-
dictions of Fig. 7(a),

F=mg � C3=Dþ C4=D
1:751 þ 1 ðfixed h; a;WÞ: (10)

Equation (10) is fit to prediction points in Fig. 7(a) and shown by
smooth curves, with coefficients of determination (R2) printed in the
legend. We disallow fitting coefficients to be negative and find that for
all four curves in Fig. 7(a), C3 is functionally zero, further indicating
that inertial force cannot be considered in isolation, a departure from
conventional approaches.9,11,12,14 With C4 artificially set to zero, best
fit correlation coefficients drop to 0:63� 0:69.

Fixing all inputs according to Table I except for h results in the
prediction points shown in Fig. 7(b). Increasing h boosts the kinetic
energy of the falling drop and Wen, increasing F/mg as expected. The
simplification of Eq. (9) for a variable h only takes the following form:

F=mg � C5hþ C6h
0:166 þ 1 ðfixedD; a;WÞ; (11)

which is fit to data points in Fig. 7(b) and plotted as smooth curves
with R2 values printed in the legend. As before, C6 values are domi-
nant, with Oð10� 100Þ, over C5 values with O(1). A true test of the
dominance of surface tension and viscosity within the deformation
term would be to include these as experimental variables and is an
area for future work.

Teasing out the influence of a varying impact offset a from Eq.
(9) is less tidy than D and h. An expression for F/mg, which is only a
function of a, or equivalently r, like that done with Eqs. (10) and (11),
creates an equation with six fitting parameters and five terms. We,
thus, find fitting such an expression to prediction data of little value.
Instead, we apply a second order Savitsky–Golay smoothing filter
spanning one-third the prediction domain, as done in previous
works.29,31,32,44–48 Such a filter reduces prediction noise to provide a
better visual representation of the prediction trend. The choice of span
is somewhat arbitrary but chosen to capture both local and global cur-
vature. We plot raw and smoothed data for F/mg vs a in Fig. 7(c). For
the prediction set associated with each cup radius, a hump in the F/mg
curve near a¼ 2mm appears. Following the hump, at greater values of
a, the force curve flattens. The cause for such behavior is unknown

FIG. 5. (a) REC curve of base learners and ensemble model to visualize the performance of ensemble regression model and (b) observed vs predicted impact force for
ensemble learning.

FIG. 6. Parameter importance scores for the predictive model of impact force.
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and an area for future work. Perhaps near this offset value, the cup is
more effectively capturing both the portion of the normal and tangen-
tial (shear) forces imposed by the spreading drop. If so, one would
expect the hump for r¼ 20mm to be shifted right more than the other
cup radii. An alternation in cup shape, from spherical to conical, is
expected to dramatically change influence of impact offset. In a conical
cup, a drop which does not spread to the cone tip should produce
nearly a constant F/mg across a.

The final use of our algorithm is to graphically show the influence
of wettability. Contact angle does not appear in Eq. (7) and has been
found to have little effect over spreading for impact Reynolds numbers
greater than 10 on flat surfaces.42,49 Maximal spread is also indepen-
dent of roughness.50 It was previously unknown if this effect is mini-
mal for concave targets. Since we use two discrete values of W, we are
unable to continuously varyW in predictions to meaningful substance.
Thus, we show how F/mg varies with r for W¼ 0 (hydrophilic) and
W¼ 1 (hydrophobic) in Fig. 7(d), curves which are nearly the same
shape as those in Fig. 7(c) rotated 180�. We predict that the hydropho-
bic cups experience a greater impact force for all r. Such a prediction is
surprising in light of previous works.42,49,50 We posit that hydropho-
bicity enables drop mobility and so drops spreading within hydropho-
bic cups will have a greater bias toward the cup center than a

hydrophilic impact, perhaps rolling downhill. Future experiments
employing transparent cups where such action can be observed along-
side force outputs is a fecund area for future work.

VI. CONCLUSION

We experimentally impact small millimetric, spherical cups of
varying radii with falling drops and record impact force from a high-
resolution force gauge. Impacts are filmed with a high-speed camera
to record drop diameter and impact distance from the center of the
cup. Impact parameters including force, drop height, diameter, impact
offset from the cup center, cup radius, and wetting condition are used
to train an ensemble machine learning algorithm consisting of four
base learners. The ensemble achieves an RMSE of 2.85mN. We for-
mulate a scaling relation for impact force to compare with algorithmic
predictions. Such a comparison reveals that the simple scaling used for
impact force on flat surfaces does not well predict impact force in
cups. Algorithm predictions show that flatter cups or those with a
larger radius of curvature experience a greater force for a fixed experi-
mental offset, and, thus, concave cups experience a lower impact force
than flat surfaces. Hydrophobic cups experience a greater impact force
than hydrophilic cups, a surprising result considering drop spreading
behavior on flat surfaces. Greater experimental data would enhance

FIG. 7. Model predictions of dimensionless impact force vs (a) drop diameter, (b) drop release height, (c) impact offset from cup center, and (d) cup radius. In panels (a)–(c),
we present force curves for each experimental cup radius, and in panel (d), we show a force curve at both experimental wetting conditions. The predictions points (dotted lines)
in panels (a) and (b) are fit with the scaling relation in Eq. (9) to produce curves (dashed lines). The curves in panels (c) and (d) are smoothed predictions.
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predictive performance, and future directions of research should
include more granularity in the experimental range of surface chemis-
try, cup radius, and the use of liquids with different density, viscosity,
and surface tension. This exploratory study reveals that drop impact
into highly curved surfaces is an area fertile for future investigations.

SUPPLEMENTARY MATERIAL

See the supplementary material for the three additional figures.
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