
Trade-offs in Augmented Reality User Interfaces for
Controlling a Smart Environment

Connor D. Flick
Western Kentucky University
Bowling Green, Kentucky, USA
connor.flick867@topper.wku.edu

Courtney J. Harris
University of New Orleans

New Orleans, Louisiana, USA
cjharri5@uno.edu

Nikolas T. Yonkers
University of South Florida

Tampa, Florida, USA
nyonkers@usf.edu

Nahal Norouzi
University of Central Florida

Orlando, Florida, USA
nahal.norouzi@knights.ucf.edu

Austin Erickson
University of Central Florida

Orlando, Florida, USA
ericksona@knights.ucf.edu

Zubin Choudhary
University of Central Florida

Orlando, Florida, USA
zubinchoudhary@knights.ucf.edu

Matt Gottsacker
University of Central Florida

Orlando, Florida, USA
gottsacker@knights.ucf.edu

Gerd Bruder
University of Central Florida

Orlando, Florida, USA
bruder@ucf.edu

Gregory F. Welch
University of Central Florida

Orlando, Florida, USA
welch@ucf.edu

ABSTRACT
Smart devices and Internet of Things (IoT) technologies are replac-
ing or being incorporated into traditional devices at a growing
pace. The use of digital interfaces to interact with these devices
has become a common occurrence in homes, work spaces, and var-
ious industries around the world. The most common interfaces for
these connected devices focus on mobile apps or voice control via
intelligent virtual assistants. However, with augmented reality (AR)
becoming more popular and accessible among consumers, there are
new opportunities for spatial user interfaces to seamlessly bridge
the gap between digital and physical affordances.

In this paper, we present a human-subject study evaluating and
comparing four user interfaces for smart connected environments:
gaze input, hand gestures, voice input, and a mobile app. We as-
sessed participants’ user experience, usability, task load, completion
time, and preferences. Our results showmultiple trade-offs between
these interfaces across these measures. In particular, we found that
gaze input shows great potential for future use cases, while both
gaze input and hand gestures suffer from limited familiarity among
users, compared to voice input and mobile apps.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in visual-
ization; • Computing methodologies → Mixed / augmented
reality.
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1 INTRODUCTION
Over the past decade, interconnected devices existing as part of the
Internet of Things (IoT) have been growing more prevalent among
consumers in multiple settings, including home, office, healthcare,
public, entertainment, and industry use, with an estimated 25 bil-
lion IoT devices that reached consumers by 2020 [30]. The Internet
of Things is defined as a network of physical devices that are digi-
tally connected together, using standard networking protocols to
communicate information between digital and physical settings
[15, 38]. As IoT devices continue to proliferate and replace more
traditional non-connected devices at a growing rate, there exists
a growing need to evaluate how users may interface with these
devices physically and digitally.

IoT interfaces have largely built upon preexisting technologies
that would be common and familiar to an average consumer. Mobile
and web apps have particular dominance in this area, taking hold
in home [49], industry [39], and healthcare environments [50], as
a few examples. Additionally, intelligent virtual assistants (IVAs)
using artificial intelligence to deliver and control Internet-based
services have also gathered prevalence, with 20% of consumers
using a smart speaker with an IVA (e.g., Amazon’s Alexa) and 41%
using a smartphone-based IVA [20]. These IVAs often include native
support for IoT control, offering consumers the ability to avoid a
myriad of apps in favor of a voice-operated IoT interface.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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However, given the unique combination of physical and digital
connections provided by IoT, augmented reality (AR) represents
an opportunity to create novel and enhanced IoT interfaces that
may offer greater accessibility over traditional interaction tech-
niques [18, 40, 46]. AR, in one of its earliest characterizations, is
defined as working to “merge electronic systems into the physical
world instead of attempting to replace them” [47]. As IoT allows for
physical objects to take on interconnected digital manifestations,
AR interfaces are poised to complement this by introducing physical
manifestations of interconnected digital objects. As AR continues
to see strong growth among consumers [28], active consideration
and continued research into AR’s role in IoT systems is necessary.

Our hypothesis is that certain methods of controlling IoT devices
via AR, particularly gestural or gaze-based approaches, will be per-
ceived as superior to conventional IoT methods and interfaces. In
this paper, we examine the potential synergies between AR and IoT
and explore the development of two promising AR-IoT interfaces.
We asked participants in a human-subject study to perform a prede-
fined set of tasks using different AR and non-AR interfaces to elicit
specific responses from common IoT devices and then complete
questionnaires based on their experiences with each method of
control. We assessed each method on a functional (pragmatic) and
an aesthetic (hedonic) basis.

We specifically investigated the following research questions:

RQ1 Are there user experience benefits of AR interfaces for IoT
devices when compared to methods already in use?

RQ2 Are there cognitive and performance benefits of AR inter-
faces for IoT devices compared to methods already in use?

RQ3 How are user preferences for AR and non-AR interfaces in-
fluenced by factors such as privacy, security, and familiarity?

This paper is structured as follows. Section 2 presents an overview
of related work. Section 3 describes the human-subject study. The
results are presented in Section 4 and discussed in Section 5. Sec-
tion 6 concludes the paper.

2 RELATEDWORK
In this section, we provide an overview of related work on user in-
teraction in smart connected environments. This section is split into
two main subsections, the first of which covers common modern
interaction methods for controlling IoT devices (e.g., voice input,
mobile apps), and the second of which covers interaction methods
enabled by AR technology (e.g., gaze input, hand gestures).

2.1 Traditional Interaction Methods
The most common method for controlling IoT smart devices in a
modern day context is via the use ofmobile andweb apps that can be
interfaced with other smart devices (e.g., smartphones, tablets) [9].
While these apps are well-suited for many use cases and environ-
ments in our society, such as smart home, smart city, and smart
factory environments [31], multiple limitations currently exist, in-
cluding interoperability challenges imposed by the prevalence of
non-standardized apps [2]. Typically, each device has its own spe-
cific app for controlling the device’s features, which limits the scala-
bility and usability of this interaction method for IoT environments
with large numbers of diverse types of devices [51].

Ledo et al. investigated an approach to overcome some of these
limitations with mobile app interfaces called proxemic-aware con-
trols, in which the location of the user’s smartphone is tracked in
relation to nearby IoT devices [24]. In this manner, the smartphone
can show the locations of these IoT devices, and more detailed
controls appear as the user approaches a particular device. While
the proximity threshold is configurable in their approach and can
be used to limit the number of IoT devices, for example from all
devices in a house to all devices in the user’s current room, the au-
thors point out that if there is a high density of devices with similar
distances to the user then this approach may need modification to
further limit the amount of devices that appear on the smartphone.
They mention that orientation tracking, or pointing toward the
desired device may be a possibility for this.

Xiao et al. investigated a different approach to overcome these
limitations, in which users can interact with IoT devices on their
smartphone via tapping their smartphone to the device they want
to use [48]. In this approach, after tapping the phone, the IoT device
is identified through analysis of the electromagnetic emissions of
the device, using a machine learning based classifier to determine
the object type, and the appropriate interface appears on the user’s
phone. While this approach consolidates many apps into one inter-
face, it is limited in that physical contact must be made with the
device or an object associated with the device, potentially requiring
the user to move to several locations to control multiple devices.
This could be particularly troublesome for mobility-impaired users
or for IoT devices placed in locations that are inconvenient to reach.

Additionally to these mobile and web app based interfaces, more
recently, we have seen the advent of IVA-based interaction meth-
ods such as used by Amazon’s Alexa or Google’s Assistant, which
utilize smart device technology to interact with IoT smart devices
through their line of smart speakers [25]. These smart speakers
integrate natural language processing and voice dialog systems
to facilitate intuitive voice-based interaction between users and a
virtual assistant. These methods have gained increasing popular-
ity in our society, in particular since 2015 when Amazon widely
released their first Echo smart speaker with native smart home
device integration [34]. However, these methods have shown their
own limitations and challenges from limited privacy controls [1]
over diversity issues in recognizing voices [37] to scalability issues
when it comes to the need for verbally referencing specific IoT de-
vices [21], as IoT devices have to be named and uniquely identified,
which can be difficult for people who are not aware of these names.

2.2 Augmented Reality Interaction Methods
AR-based interaction methods have been proposed as potential
replacements or supplements for the aforementioned means for
controlling IoT smart devices [17]. AR user interfaces can not only
visualize relevant information regarding the state of IoT devices in
the user’s environment, similar to mobile apps, but they can also
provide additional means of embodied input for users to interact
with these devices, such as via gaze [10, 11, 35] or hand tracking.
This coincides with the larger concept of the convergence of sepa-
rate research fields such as AR and IoT to create a more seamless
environment and enhance the user experience [19].
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In 2002, pointing techniques for interacting with nearby devices
were investigated by Swindell et al. [45]. In their work, they com-
pared pointing-based interaction to a menu-based system and found
that users exhibited significantly less cognitive load when using the
pointing-based system, providing early support for smart interac-
tion techniques compared to traditional menu style techniques. In
2007, Merril and Maes investigated gaze-based and pointing-based
interaction techniques for obtaining information about nearby ob-
jects [29]. Their work employs infrared emission based detection
of the user’s intended device that can be achieved via looking to-
ward the object (head gaze) or pointing at the object. Information
about the targeted object is primarily delivered aurally through a
Bluetooth earpiece as opposed to employing a visual display. Their
results showed that participants had significantly quicker comple-
tion times for several search tasks when using the pointing-based
interface compared to no interface at all (control group), whereas no
significant effects were found for the gaze-based method. This work
suggests that gesture-based interaction techniques may offer ad-
vantages over gaze-based techniques. In 2013, Chen et al. compared
gazed-based interaction techniques to menu-based selection, where
they found that users performed significantly better in terms of in-
teraction speed and subjectively preferred the gaze-based technique
over the menu-based one [7]. These papers together indicate that
gaze-based and pointing-based interaction techniques have signifi-
cant advantages over traditional menu-based techniques, although
additional comparison between gaze and pointing techniques is
needed to further establish their respective benefits and drawbacks.

Bittner et al. compared between using physical indicators and
smartphone-based AR to gather information about the state of
objects in the user’s environment [3]. They found that the majority
of users preferred the physical indicators, and users commented
that it was inconvenient to interact with the environment since
one hand was constantly required to hold the smartphone in order
to view the AR information. These results indicate that AR HMDs
may have an advantage over smartphone-based AR in this regard.

AR gesture-based interactions for controlling IoT devices were
investigated by Sun et al. in 2019, where they compared an AR
gesture-based interaction method with a more traditional smart
phone based interface [44]. They found that interaction times were
faster with the gesture-based system to interact with IoT devices.

3 EXPERIMENT
In this section we describe the experiment that we conducted to
investigate the three research questions stated in Section 1. Partici-
pants were asked to interact with smart home IoT devices in the
experiment, using four different user interfaces.

3.1 Participants
We recruited 23 participants for our experiment; 14 male and 9
female (ages 18 to 31,𝑀=21.8, 𝑆𝐷=3.5). The participants were mem-
bers of the local university community: 21 in STEM fields and 2 in
non-STEM fields. All of the participants had normal or corrected-
to-normal vision; seven participants wore glasses during the ex-
periment, and two wore contact lenses. One participant reported
being color-blind, but as our experiment was designed with suffi-
cient luminance differences among the user interfaces, we did not

Smart TV

Task Monitor

Smart Lamp

Smart Speaker

Figure 1: Annotated photo showing the room-scale smart
home experimental setup with the three IoT devices and
task monitor.

consider this a reason for exclusion. All participants were right-
handed. When asked to rate their experience with VR, 2 reported
no experience, 6 some, and 15 strong experience. For AR, 7 reported
no experience, 7 some, and 9 strong experience. For voice agents, 1
reported some experience and 22 strong experience.

3.2 Materials
To investigate the research questions in an ecologically valuable set-
ting, our materials included a room-scale smart home experimental
setup with consumer-level devices and four user interfaces.

3.2.1 Physical Environment and Devices. We used a 2.1m× 2.1m
isolated room to simulate a smart home environment for this ex-
periment. We added three common IoT devices to the room for
participants to interact with, selecting devices for their differences
in modality:

• Smart Lamp: A Phillips Hue E26 RGB light bulb1 was placed
into a standing lamp.

• Smart TV: A Roku online streaming stick2 was connected
to a Samsung TV and used as the main function of the TV.
Participants did not interact with any other TV controls
except those explicitly related to the streaming stick.

• Smart Speaker: A YamahaMSP3a Monitor speaker3, receiv-
ing output from a hidden Amazon Echo, functioned as an
interactive home speaker device.

The physical setup is shown in Figure 1. The arrangement of the
room consisted of objects commonly found in a home environment,
including a couch, chair, small coffee table, and various plants as
well as a small table with a computer monitor atop it. The monitor
was used to display instructions to the participants on what tasks
were to be completed with the IoT devices. We used a UV CleanBox4
to sanitize the equipment between use.

We used a Microsoft HoloLens 2 for the AR visual stimulus pre-
sentation (see Figure 3). The HoloLens 2 is an optical see-through
AR HMD with a field of view of circa 54 degrees diagonally, with a

1https://www.philips-hue.com/
2https://www.roku.com/products/streaming-stick-plus
3https://usa.yamaha.com/products/proaudio/speakers/msp3a/
4https://cleanboxtech.com/

https://www.philips-hue.com/
https://www.roku.com/products/streaming-stick-plus
https://usa.yamaha.com/products/proaudio/speakers/msp3a/
https://cleanboxtech.com/
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resolution of 47 pixels per degree of sight, and a refresh rate of 120
Hz. The HoloLens 2 leverages SLAM-based tracking [6] to localize
itself with respect to the physical environment. For the rendering
of the visual stimuli, we used the Unity 2019.4.26 game engine and
its integration with the HoloLens 2.

3.2.2 Stimuli and User Interfaces. Informed by prior AR interac-
tion methods (Section 2.2) we utilized four different methods of
control over the IoT devices. Of these methods, two were custom
AR implementations developed with the Unity game engine cur-
rently available to developers through usage of base HoloLens 2
features, and the other two served as our baseline conditions that
are currently in use among everyday consumers:

Gaze Input. This AR-based technique allowed participants to
interact with IoT devices in their environment by looking at them
through headmovements. For this method, we used spatial mapping
to duplicate the physical study environment into the Unity game
engine. Invisible planar objects weremapped synchronously over all
IoT devices to recognize their locations. Using HoloLens 2 features
to track participants’ movements, they were instructed to hold
their gaze for about one second on target objects to open each
respective holographic menu (see Figure 2a). A red circular cursor
was constantly projected to give users visual indication of where
their gaze is, based upon their head position. Once the menus were
opened, the same method was also used to interact with the buttons
of each menu (see Figure 3).

Hand Gestures. This AR-based technique allowed participants
to interact with IoT devices by drawing their unique symbol identi-
fier in mid-air to bring up their menu, followed by “Airtap” interac-
tion 5. For this method, we utilized legacy hand-tracking features
from the HoloLens. A green sphere was placed over the partici-
pant’s hand to give visual indication of where their gestural input
location is. The participants were instructed to perform and hold a
HoloLens Airtap by pressing their forefinger and thumb together.
This action changed the green hand-tracking sphere to a red color,
which indicated they were now in “drawing mode.” The gesture’s
drawing was comprised of any movement from the tracked hand
while the sphere was red. To give the user a visual indication of
their drawing path, holographic grey capsules were placed any-
where the hand was tracked, until the user released the Airtap hold
(see Figure 2b). Releasing the Airtap changed the hand’s sphere
color back to green. Then, the drawing was sent into a convolu-
tional neural network machine learning algorithm, called PDollar
Point-Cloud Gesture Recognizer6, where it was compared to a set
of pre-established gestures created before the study. Once the new
gesture was compared to the pre-established gestures it returned a
floating point value to represent its level of accuracy. We created
a threshold value of 0.7 or higher to set a level of acceptability for
the gestures and prevent gestures from being mistaken as another
gesture, which was a common issue at higher thresholds.

Different drawing patterns were assigned to each of the IoT
devices within the experimental space. Labels were placed near

5https://docs.microsoft.com/en-us/dynamics365/mixed-reality/guides/authoring-
gestures#air-tap
6https://assetstore.unity.com/packages/tools/input-management/pdollar-point-
cloud-gesture-recognizer-21660

the devices to indicate their activation gestures to participants. For
example, participants could interact with the speaker by drawing
an ‘S’ and with the lamp by drawing an ‘L’. However, the machine
learning algorithm is not limited to recognizing such basic drawings
and can recognize any pre-established drawing. For purposes of
this study, a capital letter that could be drawn in a single stroke
was arbitrarily assigned to each device to be the activation gesture.
We decided on these symbols after pilot testing indicated that they
appeared to be mistaken for each other by the Gesture Recognizer
less often than other types of symbols we tested, such as numbers
or abstract sketches of the shape/outline of the IoT devices. By
drawing a specific gesture, a specific holographic menu appeared
relative to the device they were trying to connect to. Once the
menus were opened, Airtaps were used to interact with the buttons
of each menu (see Figure 3).

Voice Input. This IVA-based technique allows participants to
verbally control IoT devices by verbalizing the device’s name to
the voice agent, followed by verbal commands to change its device
status. Therefore, we utilized an Amazon Echo device, which we
connected to the aforementioned Yamaha MSP3a Monitor speaker.
Because there are other popular IVAs on the market (e.g., Google
Assistant), we changed the wake command to be “Hey Computer”
to avoid too brand-specific interaction. Participants used the IoT
smart devices’ voice dialogs defined in the corresponding Amazon
Alexa Skills to interact with the devices (see Figure 2c).

Mobile App. With this technique, participants used a consumer
smartphone and mobile apps to interact with the IoT devices by
touch. For the smartphone, we chose a basic commercially available
phone, a Google Pixel 2 XL, running Android 11. We connected the
devices to the smartphone via each device’s respective app. All apps
needed to control the IoT devices were placed on the homepage
of the smartphone and were accompanied by various other apps
to simulate the common look of most smartphone homepages (see
Figure 2d).

3.3 Methods
We used a full-factorial within-subjects design in this experiment.
As described in Section 3.2, the four conditions were as follows:

• Gaze Input
• Hand Gestures
• Voice Input
• Mobile App

Each participant completed all four conditions. The testing order
of the conditions was pre-generated and randomized.

3.3.1 Procedure. Prior to the experiment trials, participants first
were asked to give their informed consent. Afterwards, they re-
ceived a brief description of what AR and IoT devices are, as well
as what they were being asked to do.

On the computer monitor (see Figure 1), participants were pre-
sented with a list of four tasks that involving all three smart devices
in the room. Participants were instructed to complete the tasks in
the order they were given, as well as given the choice to stand, sit,
or move around as they completed the tasks.

Participants repeated this process four times in separate blocks;
each time the method of control alternated between gaze input,

https://assetstore.unity.com/packages/tools/input-management/pdollar-point-cloud-gesture-recognizer-21660
https://assetstore.unity.com/packages/tools/input-management/pdollar-point-cloud-gesture-recognizer-21660
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(a) Gaze Input

Hand Gestures

(b) Hand Gestures
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Computer...

(c) Voice Input (d) Mobile App

Figure 2: Annotated images of participants using the four methods to interact with the IoT devices in the experimental space.

hand gestures, voice input, and mobile app. Each participant used
each method once, immediately after which they were asked to
complete subjective questionnaires to provide feedback on that
condition. The HoloLens headset was only worn for the gaze in-
put and hand gestures methods, and was set aside for the voice
input method, mobile app method, and survey completion. Prior to
starting the next condition, the experimenter gave the participant
a brief explanation of how to use the interaction technique, and
the participants were given the opportunity to ask any relevant
questions.

To prevent participants from repeating the same list of four tasks
for all conditions, we developed four different variations of the tasks
for each method, each of equal difficulty and consisting of subtle
variations. For example, one variation’s first task may have been
to change the lamp’s color to green, while for another variation
the second task was to change the color of the lamp to blue. There
were a total of 16 variations, 4 for each method. A Latin Square
was used to randomize the variations per participant, where no
two participants were completing the same tasks in the same order
back to back. A Latin Square was also used to randomize the order

Figure 3: AR screenshots (via HoloLens Remoting in front
of a plain wall) showing the basic smart home AR interfaces
used in the gaze input and hand gesture conditions.

in which each participant used each method of control, allowing
for additional variety between participants.

An experimenter remained in the physical space with the par-
ticipants as they completed the tasks and discreetly timed each
participant for the duration they used each method. Participants
were not made aware they were being timed. Participants were able
to freely interact with the space without disturbing the IoT devices,
including sitting and standing as they wished.

Once participants experienced each user interface and completed
the associated questionnaires, they were asked to complete an
additional post survey questionnaire.

After completing the post survey, participants were given the
opportunity to express any likes, dislikes, or general comments
about the technology they interacted with. All participants received
monetary compensation upon completion of the post-survey.

3.3.2 Measures. We collected both objective and subjective mea-
sures to understand the benefits or drawbacks of the different user
interfaces.

We considered the following dependent variables:

• User Experience: We used the user experience question-
naire (UEQ) developed by Schrepp et al. [42] to assess par-
ticipants’ user experience with each condition. The ques-
tionnaire consists of 26 semantic differential items through
which scores are calculated for six dimensions of: attractive-
ness, perspicuity, efficiency, dependability, stimulation, and
novelty. Additionally, the dimensions of perspicuity, efficiency,
and dependability can be grouped together to represent the
pragmatic quality of the experience, and stimulation and
novelty can be grouped together to infer the experience’s
hedonic quality. Answers were given on a 7-point scale.

• Usability: We used the system usability scale (SUS) devel-
oped by Brooke et al. [5] to assess the usability of each
condition. Answers were given on a 1 to 5 scale to express
agreement or disagreement with certain statements, where
1 is strongly disagree and 5 is strongly agree.

• Task Load: We used the raw version of the NASA Task-
Load-Index (NASA TLX) questionnaire developed by Hart
et al. [14] to assess the load introduced by each condition.
The NASA TLX consists of six sub-scales of mental demand,
physical demand, temporal demand, effort, performance, and
frustration. Answers were given on a 1 to 20 scale to express
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agreement or disagreement with certain statements, where
1 is strongly disagree and 20 is strongly agree.

• Completion Time: We stopped the time from the begin-
ning of each condition to the completion of all four smart
home tasks as described in Section 3.3.1.

• Preferences: We asked participants to indicate their subjec-
tive preferences and rank the four user interfaces from most
preferred (rank of 4) to least preferred (rank of 1) for the
aspects of physically comfortable, familiarity, unnoticability,
security, and privacy. Additionally to these aspects, we asked
the participants to rank the user interfaces depending on
context to understand which ones they prefer for smart home
use, smart city use, and smart office use.

We further debriefed the participants and asked them to verbalize
additional qualitative observations and impressions.

4 RESULTS
We used parametric statistical tests to analyze the responses in
line with the ongoing discussion in the field of psychology indicat-
ing that parametric statistics can be a valid and more informative
method for the analysis of combined experimental questionnaire
scales with individual ordinal data points measured by question-
naires or coded behaviors [32, 33]. We analyzed the responses with
repeated-measures ANOVAs (one factor, four levels) and Tukey
multiple comparisons with Bonferroni correction at the 5% signifi-
cance level. We confirmed the normality with Shapiro-Wilk tests
at the 5% level and QQ plots. Degrees of freedom were corrected
using Greenhouse-Geisser estimates of sphericity when Mauchly’s
test indicated that the assumption of sphericity was not met.

Additionally to the analysis of the combined questionnaire scales,
for the analysis of the ranking scales we used Friedman tests and
Wilcoxon Signed Rank tests with Bonferroni correction at the 5%
significance level.

4.1 User Experience
The results for user experience (UEQ) are shown in Figure 4(a).

We found a significant main effect for Attractiveness, 𝐹 (3, 66) =
4.57, p = 0.006, 𝜂2𝑝 = 0.17, for Perspicuity, 𝐹 (2.16, 47.58) = 9.63,
p < 0.001, 𝜂2𝑝 = 0.30, for Efficiency, 𝐹 (3, 66) = 5.28, p = 0.003, 𝜂2𝑝 =

0.19, for Dependability, 𝐹 (3, 66) = 2.90, p = 0.041, 𝜂2𝑝 = 0.12, for
Stimulation, 𝐹 (3, 66) = 10.37, p < 0.001, 𝜂2𝑝 = 0.32, for Novelty,
𝐹 (3, 66) = 25.78, p < 0.001, 𝜂2𝑝 = 0.54, for Pragmatic Quality, 𝐹 (3,
66) = 6.74, p < 0.001, 𝜂2𝑝 = 0.23, and for Hedonic Quality, 𝐹 (3, 66) =
21.23, p < 0.001, 𝜂2𝑝 = 0.49. The significant post hoc-tests (𝑝 < 0.05)
are shown in the figure.

4.2 Usability
The results for usability (SUS) are shown in Figure 4(b). We found a
significant main effect for SUS Score, 𝐹 (2.1, 45.98) = 6.14, p = 0.004,
𝜂2𝑝 = 0.22. The significant post hoc-tests (𝑝 < 0.05) are shown in
the figure.

4.3 Task Load
The results for task load (NASA TLX) are shown in Figure 5(a).

We found a significant main effect for overall (average) TLX
Score, 𝐹 (3, 66) = 5.94, p = 0.001, 𝜂2𝑝 = 0.21, for Mental Demand,
𝐹 (3, 66) = 8.91, p < 0.001, 𝜂2𝑝 = 0.29, for Physical Demand, 𝐹 (1.83,
40.32) = 18.59, p < 0.001, 𝜂2𝑝 = 0.46, and for Effort, 𝐹 (3, 66) = 4.85,
p = 0.004, 𝜂2𝑝 = 0.18. The significant post hoc-tests (𝑝 < 0.05) are
shown in the figure.

We found no significant main effect for Temporal Demand, 𝐹 (3,
66) = 0.29, p = 0.83, 𝜂2𝑝 = 0.01, for Performance, 𝐹 (3, 66) = 1.14,
p = 0.34, 𝜂2𝑝 = 0.05, or for Frustration, 𝐹 (3, 66) = 2.62, p = 0.058,
𝜂2𝑝 = 0.11.

4.4 Completion Time
The results for completion time are shown in Figure 5(b). We found
a significant main effect for Completion Time, 𝐹 (3, 66) = 12.10,
p < 0.001, 𝜂2𝑝 = 0.36. The significant post hoc-tests (𝑝 < 0.05) are
shown in the figure.

4.5 Subjective Preferences
The subjective preferences of our participants are shown in Figure 6.
For this analysis, we used Friedman tests andWilcoxon Signed Rank
tests, and we report Kendall’s W to indicate effect sizes.

We found a significant main effect for the Physically Comfort-
able item, 𝜒2 (3) = 36.60, p < 0.001, 𝑊 = 0.53, for the Familiarity
item, 𝜒2 (3) = 46.25, p < 0.001,𝑊 = 0.67, for theUnnoticeability item,
𝜒2 (3) = 30.60, p < 0.001,𝑊 = 0.44, for the Security item, 𝜒2 (3) =
24.86, p < 0.001, 𝑊 = 0.36, for the Privacy item, 𝜒2 (3) = 44.79,
p < 0.001,𝑊 = 0.65. The significant post hoc-tests (𝑝 < 0.05) are
shown in the figure.

Also, we found a significant main effect for the Smart Home
Use item, 𝜒2 (3) = 19.07, p < 0.001,𝑊 = 0.28, for the Smart City Use
item, 𝜒2 (3) = 14.53, p = 0.002,𝑊 = 0.21, and for the Smart Office
Use item, 𝜒2 (3) = 14.64, p = 0.002,𝑊 = 0.21. The significant post
hoc-tests (𝑝 < 0.05) are shown in the figure.

5 DISCUSSION
In this section, we summarize the main findings and discuss the
implications for IoT device user interfaces. We discuss the different
trade-offs between the user interfaces, and highlight how they are
influenced by participants’ familiarity with the technologies.

5.1 Influence of User Interfaces on User
Experience (RQ1)

Here we discuss the influence of the different user interfaces on user
experience factors by reviewing the significant effects in subjective
ratings of user experience and usability by the participants (see
Figure 4).

Attractiveness. Participants indicated that they saw the gaze in-
put method as more attractive than themobile app. The smartphone
required users to navigate around a digital environment of several
apps and menus unrelated to their goal, whereas the gaze input
method required users to navigate their physical environment until
they had line-of-sight with their target. The physical navigation
with gaze input was likely more intuitive overall, coming closer
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to the familiar constant experience of the physical world and be-
coming more attractive when compared to the task of navigating
through smartphone menus.

Perspicuity. The results for perspicuity suggest that gaze input
and voice input were easy for participants to understand and learn
how to use, whereas hand gestures and mobile app were more diffi-
cult. All participants were debriefed on how to use each method
and were provided written use instructions to refer back to while
completing the tasks, which was expected to eliminate learning dif-
ferences. Voice and gaze interactions are often presented as natural

user interaction mechanisms [13, 43], for instance, humans usually
look at a given target object that they are interacting with, which
may explain the higher perspicuity scores of these mechanisms. On
the other hand, humans do not commonly use gestures to interact
with objects and this lack of general familiarity may have influ-
enced participants’ perceptions of perspicuity for hand gestures.
Interestingly, although use of mobile phones and applications is
highly common in many societies, still, we observed lower per-
spicuity scores for the mobile app condition. We speculate that this
may be due to the fact that participants were not presented with
a single unified app interface when interacting with the different
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IoT devices and needed to utilize different apps for each device
(see related challenges discussed in Section 2.1), which potentially
resulted in lower perspicuity scores.

Efficiency, Dependability, and Pragmatic Quality. Participants
rated the gaze input and voice input methods higher than hand
gestures in terms of efficiency, suggesting that the perceived effort
and time taken to complete tasks using the method was greater
for hand gestures when compared to gaze input and voice input.
The overall pragmatic qualities of each of the methods were rated
similarly. In terms of dependability, participants rated gaze input
higher than hand gestures. One factor in this could be the fact that
we used a machine learning classifier in the hand gesture condi-
tion, compared to not relying on such classifiers in the gaze input
condition. The machine learning classifiers used with the hand ges-
tures method would occasionally fail to identify or misidentify user
gestures. While we did not log the number of these occurrences in
the study, we observed that in most cases participants were able to
resolve them by drawing the symbol once again. However, these
occurrences may have lowered the efficiency, dependability, and
pragmatic quality scores as a result, especially when considering
the greater physical and mental load required by the hand gesture
condition in comparison to voice input, which also uses a machine
learning model.

Stimulation, Novelty, Hedonic Quality. We found that participants
rated gaze input and hand gestures significantly higher than the
mobile app regarding stimulation, as well as rating gaze input higher
than voice input. Our results also show that gaze input and hand
gestures were rated higher than voice input or the mobile app in
terms of novelty. This was also true for the hedonic quality, which
also shows voice input being rated higher than the mobile app.

Taken together, these results suggest a level of interest, engagement,
enjoyment with the AR-based methods that is not reached in the
other methods, indicating a larger preference to use AR as a method
of control despite currently existing pragmatic drawbacks (such as
the weight and discomfort of wearing the AR HMD).

System Usability Scale. Our results show gaze input being rated
higher than hand gestures, and voice input being rated higher than
the mobile app and hand gestures on the system usability scale. The
scale and its results are largely a reflection of the pragmatic quality
of the UEQ and its component parts, being subject to the same
factors and reasoning for what may be underlying the results. The
results generally indicate that the AR-based methods are able to
perform at the same level, if not better than, the more traditional
methods of control that exist, whether that be on the more usable
or less usable end of the scale.

5.2 Influence of User Interfaces on Cognitive
Aspects and Performance (RQ2)

Here we discuss the influence of the different user interfaces on
cognitive and performance aspects by reviewing the significant
effects in task load and completion times by the participants (see
Figure 5).

Mental Demand. The hand gestures condition was rated as pro-
ducing a significantly greater mental demand than gaze input or
voice input, while the mobile app was rated as producing a greater
mental demand than gaze input alone. These demands may be a
result of the relative complexity of these menus and the greater
number of actions required to navigate them, relative to gaze input
or voice input. The mobile app condition requires users to navigate
around several apps, in-app menus, and options for control and
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determine which of these, in the correct order, will complete the
task. When compared to something like voice input, which is often
designed to heavily reduce the voice dialogs the user must navigate
and all of the associated information they carry, the mobile app
method frequently presents as much information as reasonably
possible to the user. As a result, the mental demands for the mobile
app were likely higher overall. The steps needed to reach a menu
in the hand gestures condition are also typically more involved and
require multiple steps and specific hand movements to keep track
of, creating a greater mental demand when compared to gaze input,
which only has one immediately available step to access a menu
for any IoT device. Due to the lack of accuracy in the gesture recog-
nizer algorithm and its need for an accuracy threshold, we found
most participants required multiple attempts to create a version of
the gesture that would pass the threshold. This not only impacted
mental demand but physical demand and completion time as well.

Physical Demand. As expected, the hand gestures method pro-
duced a greater physical demand than any other method. A partici-
pant using hand gestures would need to have their hand in front
of their face to be detected by the HoloLens’ hand tracking, some-
times for an extended period of time, which may produce physical
strain on the back, bicep, and shoulder whereas the other methods
may not. This observation is in line with previous research, some-
times denoted the “Gorilla Arm Syndrome” common to 3D mid-air
interaction in VR/AR [16, 27].

Effort and Average. Our findings indicate that the hand gestures
method was perceived as requiring significantly more effort as well
as producing a greater subjective workload overall when compared
to gaze input and voice input. Given the hand gestures condition
required the highest combined mental and physical demand out
of all of the methods, it is reasonable to assume that the reported
increase in demand would likely result in a correlated increase in
effort to meet these demands. The differences in dependability for
the hand gestures condition likely also played a role, as errors in
the machine learning classifier could cause participants to have
to repeat a movement, which increases the effort needed despite
maintaining the same mental and physical demands. These factors
culminated in the average workload reported, as consistently ele-
vated demand and matching effort from the hand gestures method
led to a significantly increased burden on the end user. Notably, the
differences between the gaze input and the hand gestures methods
for average task load suggest that the factors previously described
are centralized to the hand gestures method and are not indicative
of AR-based control methods altogether.

Completion Time. Our participants typically took longer with
the hand gestures and mobile app methods than the gaze input and
voice input methods. Menu navigation presumably is a driving force
behind this disparity, as the overall steps, redundant information,
and complexity of reaching a target menu with the hand gestures
and mobile app methods are relatively complex when compared to
more immediate and command-based approaches with voice input
and gaze input. Moreover, gaze input and voice input rely on very
common, nearly intrinsic human behaviors whereas the mobile
app and hand gestures rely on less common, more specialized, pro-
cesses. Tapping into these common and instinctive behaviors likely

simplified the gaze input and voice input methods for participants,
reducing their completion times. The relatively high perspicuity
of the gaze input and voice input methods likely also reduced their
times, as participants likely required a shorter learning and explo-
ration period to familiarize themselves with the method before
attempting their tasks in earnest.

5.3 Factors Influencing Subjective Preferences
of User Interfaces (RQ3)

Here we discuss the factors influencing user preferences of different
user interfaces by reviewing the significant effects in subjective
preference ranking by the participants (see Figure 6).

Familiarity. As expected, participants’ ranking scores indicated
that they were more familiar with the non-AR methods compared
to the AR methods. Among the AR-based methods, gaze input was
ranked as more familiar compared to hand gestures. Considering
that gaze can be indicative of one’s focus of attention [22], it is
possible that our participants were more intuitively accustomed to
this form of interaction.

Physical Comfort. Our findings indicated that participants ranked
the mobile app method as more physically comfortable compared
to both AR methods. We also found the voice input method to
be ranked as more physically comfortable compared to the hand
gesturemethod. It is possible that users rated the ARmethods as less
comfortable for reasons similar to what was found with the work by
Bittner et al. [3]. In their work, users noted that it was inconvenient
to use a smartphone-based approach compared to an approach in
which the IoT information is visible in the environment without use
of an additional display. In our work, it is possible that participants
considered the act of switching contexts by donning the AR HMD
when rating the interaction methods based on physical comfort, as
it is certainly more convenient to pull a phone out of one’s pocket
than it is to don an AR HMD. As AR HMD technology advances and
improves in form factor, such devices may eventually complement
or take the place of the ubiquitous smartphones that we use today.
Should this occur, we believe that this issue of physical comfort
may at least be partially resolved.

Smart Home, City, andOffice. Participants’ preferences for the use
of the methods in different environments changed when comparing
the more private environments (i.e., smart home) with the less
private ones (i.e., smart city and smart office). Both non-ARmethods
were ranked higher than the hand gestures method for the Smart
Home Use item, while only the mobile app was ranked higher than
hand gestures for the Smart City Use and Smart Office Use items.
Additionally, the mobile app was also preferred over voice input for
the Smart City item. This may be due to the lower perceived privacy
afforded by a smart city environment and also the potentially higher
ambient noise levels.

Unnoticeability, Security, Privacy. Our participants’ subjective
preference rankings indicated the advantage of the mobile app and
gaze input methods compared to the voice input and hand gestures
methods in matters of noticeability, security, and privacy. Look-
ing at the security item, we found that both the mobile app and
gaze input were ranked as more secure compared to voice input.
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Additionally, in comparison to voice input, all methods were ranked
as affording more privacy, while gaze input was also ranked as
more private than hand gestures. This may be a reflection of pre-
existing perceptions and expectations about security and privacy
for the technologies underlying each method. Smart speakers with
voice-based virtual assistants are often seen as insecure, untrust-
worthy, and lacking adequate privacy safeguards, especially when
compared to a smartphone that may allow for more transparent
and granular privacy controls [1, 12, 23]. There are also existing
concerns about AR data privacy (e.g., gaze-based interaction) [36],
but the relative unfamiliarity with AR technologies when compared
with smart speakers and voice-based virtual assistants may have
caused participants to be less attuned to these risks. Last, we ob-
served that the mobile app was ranked as less noticeable compared
to the voice input and hand gesture methods, and the same pattern
was observed between gaze input and hand gestures. These findings
are understandable, considering that nowadays individuals carry
and use their phones everywhere and utilizing gaze as an interac-
tion mechanisms is inherently a less conspicuous approach to an
external observer compared to verbalizing a command or drawing a
gesture. However, considering the increase in research supporting
gesture-based interaction (e.g., selection and manipulation of vir-
tual content), it is possible to speculate that as people’s familiarity
with gesture-base interaction grows the more unnoticeable it may
become [41].

5.4 Limitations
Participants were comparatively familiar with the non-AR meth-
ods in this study, while the AR-based methods were largely new
to them. Since level of familiarity can affect interactions with the
technology, it is possible that some of the measured benefits of the
more traditional methods were due to familiarity and not neces-
sarily due to the mechanisms of the approaches themselves [4]. As
AR technology becomes more accessible to the general population
and users become more familiar with interacting with AR user
interfaces, it is possible that user preferences and performance in
using AR-based interaction methods may shift over time. This is
something that should be considered as future work continues to
investigate the intersection of AR and IoT devices.

While some of the questions in our surveys asked about user
preferences in different contexts, e.g., smart home, smart city, and
smart office contexts, participants only experienced the interaction
techniques within our single experimental environment. It is possi-
ble that these preferences may be different if the user is given the
opportunity to perform the interactions in each of the mentioned
contexts, as there may be factors associated with those contexts
that were not considered by the users when making their selections.
Such factors could include physical conditions such as ambient
noise and lighting, as well as social conditions, such as the amount
of people in the environment and the level of familiarity between
the user and others around them.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented a comparative evaluation of four user
interfaces for controlling IoT smart devices: two AR-based and two
non-AR user interfaces. Specifically, we tested gaze input, hand

gestures, voice input, and mobile app. Our results revealed multiple
trade-offs with respect to the pragmatic and hedonic qualities of
these methods, with hedonic qualities generally favoring AR-based
methods and pragmatic qualities favoring gaze input and voice input.
Overall, our results suggest that gaze input has great potential for
future IoT use cases, receiving high rankings and ratings compared
to the other methods, even considering that participants reported
being less familiar with the AR-based methods. Despite relatively
high ratings for hedonic and aesthetic measures indicating a will-
ingness to try AR-based methods by participants, both gaze input
and hand gestures still suffer from limited familiarity among typical
users, affecting perspicuity and overall perceptions of the meth-
ods. We discussed limitations of our study and avenues for future
research studying AR interfaces for IoT devices.

Future Work. Based on our results, future work may focus on
user experience improvements of the AR-based methods. First,
we believe that basic improvements of the hand gestures method,
specifically more comfortable 3D drawing (e.g., [26]) and improved
machine learning for the drawing recognition, could significantly
improve the user experience. It also may be valuable to explore
more intuitive gestures. For instance, users may prefer specific
devices and actions to have iconic gestures associated with them
rather than the symbolic characters of this study [8]. In addition
to improving these methods, it also may be valuable to explore
more ways to use AR to interact with IoT devices, apart from gaze
input and hand gestures. For example, it may be useful to design
interaction methods that combine multiple AR and IoT interaction
methods or leverage input from other parts of the body.
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