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ABSTRACT
The smart home concept can significantly benefit from predictive
models that take proactive management operations on home actu-
ators, based on users’ behavior evaluation. In this paper, we use
a small-scale physical model, the ScaledHome-2 testbed, to exper-
iment with the evolution of measurements in a suburban home
under different environmental scenarios. We start from the obser-
vation that, for a home to become smart, in addition to IoT sensors
and actuators, we also need a predictive model of how actions taken
by inhabitants and home actuators affect the internal environment
of the home, reflected in the sensor readings. In this paper, we
propose a technique to create such a predictive model through
machine learning in various simulated weather scenarios. This pa-
per also contributes to the literature in the field by quantitatively
comparing several machine learning algorithms (K-nearest neigh-
bor, regression trees, Support Vector Machine regression, and Long
Short Term Memory deep neural networks) in their ability to create
accurate and generalizable predictive models for smart homes.

CCS CONCEPTS
•Computingmethodologies→ Simulation environments;Ma-
chine learning approaches; • Hardware → Temperature opti-
mization.
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1 INTRODUCTION
The recent improvements and cost efficiency of IoT devices al-
lowed the augmentation of homes with Internet-connected sensors
that can measure various environmental parameters and actua-
tors. Through these domotic sensors and actuators, the users can
remotely control many home features, such as doors, window shut-
ters, heating, and air conditioning units, or dehumidifiers. However,
to make a home really “smart”, we need to ensure that the actions
taken by these devices are efficient, synergic, and in line with the
inhabitants’ preferences.

A precondition of making the right control decisions is the ex-
istence of a predictive model of the home - how will the values
measured by the sensors change if specific actions are taken? How-
ever, developing a closed-form mathematical model which, given
a specific home in particular circumstances, predicts the temporal
evolution of the sensor readings is a challenging cross-domain mod-
eling task. Developing machine learning models is a compelling
alternative that, at least, switches the modeling difficulty with a
data collection challenge.

At first glance, gathering data from an IoT augmented home
is straightforward: we can log sensor readings and actuator ac-
tions. However, the data collected in this fashion will be tied to and



affected by the specific elements of the considered home, environ-
ment, geographic area, and inhabitants’ preferences. To gather data
for a different home, we need to build a home in the target geo-
graphic area and put it through several scenarios where some of the
inputs (such as weather) are not under our control. Thus, gathering
real-world smart home data is expensive and time-consuming. Be-
sides, the publicly available datasets are relatively small and specific
to the peculiar home where they were collected.

The ScaledHome project aims to create reusable and small-scale
experimental testbeds that replicate a full-scale suburban home,
including its sensors and actuators. It provides an environmental
modeling system that allows us to position the home in a given ge-
ographic location and a weather pattern. For instance, it can model
a summer in Orlando, a fall in Milan, or a winter in Norway. The
work described in this paper centers around the sensor augmenta-
tion and control of the remotely controllable ScaledHome-1 [12]
and ScaledHome-2 [4] testbeds, as better detailed in the following
parts of the paper, as well as the collection of data and the creation
of predictive models using machine learning techniques.

The main contributions of the work done are related not only
with the IoT and the smart home area but also with a novel simula-
tion approach and to the application of machine learning techniques
to a domestic energy efficiency scenario. To better match the real
environmental metrics, we run multiple simulations of real-world
scenarios. The technical contributions of this paper are as follows:

• The first presentation of the physical and control implemen-
tation of the ScaledHome-2 system.

• The newly designed architecture of our ScaledHome-2 frame-
work environment, by focusing on our framework compo-
nents that enable the remote performance of experiments.

• A novel technique to create predictive machine learning
models for a specific physical home modeled through our
testbed. We compare the performance of our models depend-
ing on the different machine learning regressors adopted to
train them, i.e., K-nearest neighbor, regression trees, SVM
regression, and long short term memory (LSTM) deep neural
networks.

The rest of the paper is organized as follows. We present the
related work in Section 2. We provide a detailed description of
our smart home prototype and methods in Section 3. In-the-field
experimental evaluation is presented in Section 4, and Section 5
concludes the paper.

2 RELATEDWORK
Because of the difficulties and time-consuming tasks associated
with in-the-field experimentation over real smart homes, only a
few related works exist in the literature. Most papers deal with
metrics simulation in real-size test-beds. For example, Barker et
al. [3] led to a set of heavily instrumented real-size smart homes.
They provide a large number of test-beds for collecting data and
experimenting with new techniques and algorithms to improve
smart home efficiency. Some of the collected data has been useful
to run preliminary tests before the completion of ScaledHome-2
since it shares similar approach and goals. The study conducted by
Mateo et al. [13] used different kinds of regression models to predict
the smart home temperature with an average error of about 0.1◦;

the developed modeling was applied to large buildings. The results
cannot be directly used in a smart home system since additional
scaling and tuning are necessary to correlate the results with smaller
buildings.

Several studies have considered new solutions to modify the
environment in new energy-efficient ways, by employing machine
learning techniques to make the proposed solutions react to new
scenarios autonomously. Jin et al. [16] have produced a predictive
model able to optimize the power consumption for heaters located
in a smart home environment. They obtained their model by im-
plementing a recurrent neural network (RNN) and a long short
memory model (LSTM), which utilized real temperature and hu-
midity data collected by a real-size physical home. Their proposed
optimization scheme saves energy while providing a comfortable
environment based on user preferences on temperature and hu-
midity. Han and Lim [9] employed IEEE 802.15.4 and ZigBee to
develop a smart energy solution for residential or light commercial
environments. It focuses on sensing device control, pricing, demand
response, and load control applications. Razghandi and Turgut [14]
propose an appliance-level load forecasting algorithm in residential
homes instead of the level of the whole household in previous stud-
ies. Their model uses LSTM to predict a given appliance’s potential
load consumption over different time intervals. The Weatherman
is the model presented by Chen and Irwin [5] that analyzes energy
consumption data as well as wind and solar generation data to
predict where a set of coarse energy consumption has occurred.
Weatherman’s main idea is that a set of weather signatures appear
similarly in different environments around the world. Their method
can be suitable in the construction of energy consumption-aware
environments. The prototype presented by Teich et al. [15] is a
neural network aimed at being implemented inside smart homes
to maintain a cozy temperature defined by the user in an energy-
efficient way. The dynamicity of the model allows it to re-train itself
based on new activities inside the home. Dahmen et al. [7] focus on
the security aspect of smart homes: their model detects anomalies
within the home behaviors to automatically detect threats and to
identify proper actions to be taken to guarantee the security of the
environment.

Another set of studies has focused on carefully analyzing the
relation between home features and human activities. In that sense,
Lee et al. [11] have examined the relationship between the behav-
ior of in-home inhabitants and indoor air quality by employing
data collected from several sensors and chemical indoor air quality
measurements. They gathered data from two smart homes to an-
alyze how indoor air quality affected human behavior inside the
house. They have also examined the relationship between indoor
air quality and different smart home features (e.g., temperature and
humidity). To analyze the data collected, they used various machine
learning models such as random forest, linear regression, and sup-
port vector regression. Their work has shown a strong relationship
between in-home human behavior and corresponding air quality,
proposing a potential generalization of this consideration across
multiple smart home scenarios. They show that the most impactful
feature of human activities is temperature. Kim et al. [10] propose a
method built upon different probability-based algorithms to identify
social movements inside the house. The target application scenarios
are human-centered such as healthcare and education. The research



focused on the recognition of multiple patterns and the ambiguity
of different actions. The same motivations drove Cook et al. [6] to
design a smart home to predict inhabitant action accurately. Their
neural network algorithm facilitated an adaptive and automated
environment to enhance the experience of its inhabitants. The meta-
predictor proposed by Cook et al. [6] combines the strengths of
multiple approaches to predict inhabitant actions. It is an intelli-
gent agent where a weighted voting scheme between predictive
algorithms generates the final forecast. Fritz and Cook [8] focused
their work on elderly healthcare. They discussed the application of
health-assistive smart homes by using data collected from sensors
in elderly patients’ homes, monitoring them with intelligent algo-
rithms, and predicting potential changes in patients’ health status.
Alberdi et al. [1] proposed a smart home health-based models in
which data was collected over more than two years to develop two
models. The first model can detect mobility skills changes, while
the second is related to the detection of changes in memory skills.
These models act as an early warning system to prevent potentially
dangerous symptoms from being harmful.

3 INTERACTION AND BEHAVIOUR
EVALUATION IN SCALED HOME

3.1 Problem Formulation
We define the state of our environment as the values of current
readings of sensors and actuators; this state could also include other
information such as the present time. More formally, we refer to the
state of real-world smart home as 𝑋𝑅 = {𝑥𝑅

𝑖
}, in which 𝑥𝑅

𝑖
is the

value of sensor or actuator 𝑖 . 𝑅 denotes a real-world environment.
We can divide 𝑋𝑅 into three disjoint subsets: 𝐼𝑅 , 𝐼 ′𝑅 and 𝑂𝑅 . 𝐼𝑅 is
the sensor readings inside, and 𝐼 ′𝑅 is the actuator states. 𝑂𝑅 refers
to sensors that are outside the smart home for outside temperature
and humidity, etc. The difference between 𝐼𝑅 and 𝐼 ′𝑅 is that we do
not have any direct control over 𝐼𝑅 ; however, we can control the
values of 𝐼 ′𝑅 by sending signals or commands to the actuators.

Since the collection of data from real-world smart homes could
be time-consuming and costly, this pushes the alternative option of
simulation usage. The technical challenge here is understanding
how exactly inside temperature is impacted by outside variables
and inhabitants’ actions. Our research work concentrates on build-
ing scaled physical models of homes that combine the cost and
efficiency of simulation with the realism of physical measurements.

Formally, we define the scaled home state as 𝑋 = {𝑥𝑖 } without
superscript 𝑅, in which 𝑥𝑖 is the value of sensor or actuator 𝑖 in the
scaled home environment. We can divide 𝑋 into four subsets: 𝐼 , 𝐼 ′,
𝑂 , and𝑂 ′. Notice that we have a new subset𝑂 ′ in the scaled home
environment that we did not have in the real world. 𝑂 ′ denotes
the set of actuators that we can control to impact 𝑂 . Finally, the
state of the environment changes through time. We use subscript 𝑡
to define state in a fixed time step 𝑡 (e.g., 𝑋𝑡 is the state of scaled
home at time step 𝑡 and 𝑋𝑅

𝑡 is the state of real-world environment
at time step 𝑡 ).

Our goal is to develop a predictive model suitable for smart
home optimization and planning. For example, to figure out the
best policy for minimizing energy consumption, we can do that by
considering every possible action by generating and evaluating a
tree of options with our prediction system. We can then choose the

most energy-saving and efficient path in the tree. More formally,
given:

• two time instants 𝑡𝑖 and 𝑡𝑖+1 where 𝑡𝑖+1 > 𝑡𝑖
• the corresponding 𝑋 (𝑡𝑖 ) and 𝑋 (𝑡𝑖+1) scaled home states
• 𝑓 (𝑋 ) as the function meant to predict a scaled home state
by a previous one

• 𝑋 ′(𝑡𝑖+1) as the future state predicted by 𝑓

𝑋 ′(𝑡𝑖+1) = 𝑓 (𝑋 (𝑡𝑖 )) (1)

• 𝐿𝑝 as the loss function between the predicted state and the
actual one in 𝑡𝑖+1.

𝐿𝑝 (𝑡𝑖+1) = |𝑋 ′(𝑡𝑖+1) − 𝑋 (𝑡𝑖+1) | (2)

• 𝐿𝑐𝑜𝑠𝑡 function represents the energy consumption due to
the actuators working time.

Our goal is then to find the best 𝑓 (𝑋 ) that minimizes both the
𝐿𝑃 =

∑𝑛
𝑖=1 𝐿𝑝 (𝑡𝑖 ) and 𝐿𝑐𝑜𝑠𝑡 loss functions.

To enable our prediction system, we need to have access to
both outside and inside smart home data. Outside data can involve
metrics such as temperature and humidity, while inside features
may include actuators state. We can simulate outdoor scenarios
through our simulation environment and perform actions to change
interior characteristics. It means we can make 𝑂 close to 𝑂𝑅 by
controlling𝑂 ′; in this way, we can also control 𝐼 ′ to collect data on
how our actions impact 𝐼 .

3.2 ScaledHome
The ScaledHome-1 prototype by Ling et al. [12] has been signifi-
cantly enriched with additional equipment and with a framework
designed for easy extensibility and flexibility. This paper focuses on
the description of the software entities composing this extension
and resulting in a further improved version of the ScaledHome-2 [4]
prototype; also, the paper originally concentrates on the applica-
tion of our solution to control inside temperature while minimizing
energy consumption.

To those purposes, in ScaledHome-2, we re-designed our frame-
work to collect large amounts of data, suitable to set up predictive
models for energy efficiency. There are many different scenarios
where the crucial role played by the AC system cannot be under-
estimated in a smart home. For example, when we want to reach
a temperature state that is very far from the current one, other
energy-saving actions inside the house are insufficient to achieve it
and the only way is to turn on the AC system. Nonetheless, there
are some scenarios where the targeted state is close to the current
one and we can adjust the state of each room by balancing the
appropriate environment features while saving as much energy as
possible.

To exemplify in a simple scenario, let us consider a situation
where we have just two rooms with different temperatures (𝑇𝑎 and
𝑇𝑏 ), and we are interested in reaching a target temperature 𝑇 . If
the target temperature is in the [𝑇𝑎 , 𝑇𝑏] range, it is then possible
to reduce the heat of the warmest room and increase the coldest,
with no economic/environmental cost, by allowing the two rooms
to exchange thermal energy. With this consideration in mind, a
plannerwhich canmake autonomous decisions to accomplish target
state requirements would be a significant improvement in the smart
home research area. On the other hand, we would need a large



amount of data to automatically build a predictive model to be used
by the planner.

Let us emphasize the crucial role of data collected by empirical
experiments operated in the real world in this field, in order to
guarantee the maximum compliance of simulation scenarios and
results. As we are going to demonstrate in Section 3.3, our simu-
lation environment can reproduce with reasonable accuracy the
metrics collected from real-world scenarios.

By delving into finer technical details, taking ScaledHome-1 and
ScaledHome-2 as the starting basis for thework originally presented
here, this paper offers the novel contribution of proposing a reliable
and scalable distributed system meant to collect and analyze real-
time information about the simulation environment. Moreover, the
data collected are processed to extract the information needed by
the system to respond to external events autonomously. From now
on, for brevity reasons, we use the term ScaledHome to indicate the
current version of the prototype that can be described by taking
into account two associated new sub-systems:

• Control system represents all the characteristics of a real
smart home, including those related to automated devices,
such as the AC, and those connected with the inhabitants’
actions.

• Experiment management system provides a transparent
interface to set up and run experiments. It includes a remote
UI, a data collection service, and an agent to load real-world
scenarios.

A central entity is in charge of the interaction between these
two systems. While the control system communicates with this
primary entity by sending and receiving MQTT messages, the ex-
periment management system interacts by sending REST requests
since it does not necessarily need to be close to the physical simu-
lation environment. The code related to both the control0 and the
experiment management1 systems will be made available to the
community to encourage the participation of third-party research
teams.

Figure 1 shows the different entities that extend the ScaledHome
system:

• Actuator controller is the entity in charge of managing all
the actuators placed inside the house. It does not contain
any business logic since it performs simple actions every
time it receives an MQTT command message by the home
controller.

• Sensor controller manages all the sensors placed in the
house, collecting humidity and temperature from each of
them every time it receives an MQTT request message by
the home controller.

• Home controller is the centralized entity that contains all
the business logic. It sends and receives MQTT messages
depending on the behavior needed to perform the current
simulation. It stores the data collected while keeping track
of the state of the house during the simulation interval. Also,
it provides a discovery service used to find and interact with
the two controllers and to guarantee the synchronization of
the model with the actual sensors and actuators state.

0https://github.com/MatteoMendula/ScaledHome_Control_System
1https://github.com/MatteoMendula/ScaledHome_Experiment_Management_System

• Environment simulation agent interacts with the home
controller to run real-world simulations by taking care of all
the scaling aspects due to the mapping of the real state into
the simulation one.

• Action planner agent provides the house with the per-
formable actions, thus enabling ScaledHome to react to out-
side environmental changes by taking into account the cur-
rent distance to the target state and the power saving policy.

Figure 1: ScaledHome software entities divided into control
and experiment management systems.

On the one hand, the actuators and sensors controllers have to
be placed on a corresponding Raspberry Pi to perform the actual ac-
tions and provide real data. On the other hand, the home controller
is deployed on either a local machine or a cloud host provider since
it works independently by the underlying infrastructure, thanks
to the adopted micro-services approach. The environment simu-
lation agent and the action planner agent can be deployed on a
different machine because they do not directly interact with the
hardware controllers. They have to know the URI location of the
home controller to get the smart home state and to provide the
required actions to react to the outside environment.

As shown in Figure 2, the ScaledHome testbed consists of six
rooms. Each of them has at least a temperature and humidity sensor,
a door, and a window. The model has eight windows and seven
doors, two of which are entrances to the house. Each door and
window is connected to a motor for opening and closing operations,
as we wanted to simulate a real human being moving inside the
house, and provide the action planner agent an alternative and
“green” way to change temperature and moisture inside each room.

A Raspberry Pi3 handles the sensors scattered throughout the
house. It is connected to a T-Cobbler Breakout employed to connect
signal, power supply, and ground wires to the physical sensors.
We used the DHT11 sensors for temperature and humidity since
they do not need any additional power supply and work with a
3.3V output already supplied by standard Raspberry Pi3 outlets.
According to its datasheet that is summarized in Table 1, DHT11
can measure temperature in the range [0◦C, 50◦C], and humidity
as a percentage in the range [20%, 90%]. In terms of accuracy, the
one related to temperature is ±2 ◦C, while the one for humidity is
±5%.



Figure 2: Real and simulation temperature mapping.

Temperature Humidity
Measurement range [0◦C, 50◦C] [20%, 90%]

Accuracy [±1 ◦C, ±2 ◦C] [±1%, ±5%]
Response time [6s, 30s] [6s, 15s]

Table 1: Sensor datasheet specifications.

We define actuators as all the devices which can change both the
outside and the inside state proactively. According to that definition,
the following entities are included in the actuator set:

• a lamp simulating a general heating source like the sun
• a big fan simulating a general cooling source like the wind
• a small fan which simulates the AC system
• 15 motors connected to doors and windows

A second Raspberry Pi3, equipped with a Servo HAT, controls the
actuator set, and an additional power supply provides the energy
needed to move the motors.

About the entity’s interaction, we decided to avoid direct com-
munication between the two controllers by placing a rendezvous
point between the two, i.e., a Pub/Sub Broker entity. This broker
communicates with another component to support the business
logic of the entire system: the home controller, which plays a more
complex task in terms of responsibilities and computation duties
than the other two controllers. Although the introduction of a new
entity increases the complexity of the system, it also guarantees a
more significant time and space decoupling. By doing so, the con-
trollers have to perform instructions and collect data. At the same
time, all the most complex actions, related to the coordination of the
whole system, are delegated to an entity with higher computational
abilities.

The home controller acts as a middleware inside the system. It
coordinates the entities composing ScaledHome, ensuring availabil-
ity, and providing a discovery service able to find and communicate
with the two controllers. It has been implemented in JavaScript to
guarantee good performance in a lightweight Web environment.
Also, it collects and stores data every 10 seconds, updating its state,
saving a new document inside MongoDB, and appending state
data on a CSV file. The GUI interface receives each new record to

maintain the user session synchronized with the ScaledHome state.
The middleware handles the interaction with the MQTT broker,
by sending and receiving MQTT messages. The business logic of
the application is self-contained into a central entity that interacts
with the two controllers through the broker.

The MQTT messages exchanged are listed below:

• 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦: the message published by the home controller to
identify if the actuators controller and the sensors controller
are active and subscribed to the MQTT broker.

• 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦_𝑟𝑒𝑝𝑙𝑦: the message sent by the two controllers
when they receive the discovery message. It contains the
specific controller identifier.

• 𝑟𝑒 − 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛_𝑟𝑒𝑡𝑟𝑦: the middleware sends this message
when the controllers are not replying to a fixed number of
interested MQTT messages.

• 𝑐𝑚𝑑 : the middleware sends a cmd message to the actuators
controller to specify the actions the controller has to perform.

• 𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑟𝑒𝑐𝑜𝑟𝑑 : the home controller publishes a request_record
message to obtain updated data about the state of the house
from the sensors controller. It can ask a full record, contain-
ing the whole state, or it can request a subset of the state of
the system, such as the temperature of a room.

Given that one of our main goals is to encourage the usage of
ScaledHome by third parties, specific attention has been devoted
to simplifying how potentially remote groups of researchers can
participate in ScaledHome experiments. Two primary modes are
supported:

• Passive: observing the ongoing experiments in real-time
via the Web interface, streaming data, and video. Also, the
researchers can download and process data from past exper-
iments.

• Active: remotely controlling the user policy, home policy,
and smart grid policy through scripts or a man-in-the-loop
model. The researchers can also specify climate patterns or
perform real-time control of the weather.

This requirement has been satisfied by implementing a Web
server in NodeJs, able to interact with the user via a graphical
interface, and to perform actions as consequences of REST requests.
A WebSocket guarantees the constant update of records to the
clients subscribed to the ScaledHome simulation system and are
interested in receiving new and reliable data.

3.3 The Adopted Methodology: the
Temperature Use Case

For simplicity and presentation briefness, in the following parts
of the paper, we focus our simulations on temperature only. Since
our final goal is to simulate a real day of different cities worldwide,
we tested the capacity of ScaledHome to decrease and increase
the temperature we have to map into our simulation environment.
We have to know how much time is required by the smart home
to move from a starting state to a target state to determine the
best scaling approach and the associated simulation time interval
duration.

To do that, the technique we propose starts with plotting the
increasing and decreasing temperature functions. Figure 3 and



Figure 3: ScaledHome outside temperature increasing func-
tion.

Figure 4 illustrates how fast ScaledHome changes its outside tem-
perature.

Figure 4: ScaledHome outside temperature decreasing func-
tion.

Table 2 shows the boundaries we have found by running several
simulations, the reported average values for temperatures, and the
corresponding times required to reach each bound.

Temperature value Δt
MAX 39±1◦C 1100±20 seconds
MIN 21±1◦C 150±20 seconds

Table 2: Simulation temperature boundaries.

Thanks to the data obtained by Milano Weather Station, pub-
lished on Hardvard Dataverse [2], it has been possible to scale the
temperatures in Milan in a range reachable by ScaledHome. Given
the mathematical representation described in Table 3, we can map
the real-world environment and the simulation according to the
formula below:

𝑆𝐻𝑖 =
𝑀𝑖 −𝑚𝑖𝑙𝑚𝑖𝑛

𝑚𝑖𝑙𝑚𝑎𝑥 −𝑚𝑖𝑙𝑚𝑖𝑛
× (𝑠ℎ𝑚𝑎𝑥 − 𝑠ℎ𝑚𝑖𝑛) − 𝑠ℎ𝑚𝑖𝑛 (3)

Scaling parameters Mathematical representation
Lower bound in Milan 𝑚𝑖𝑙𝑚𝑖𝑛

Upper bound in Milan 𝑚𝑖𝑙𝑚𝑎𝑥

Lower bound in SH 𝑠ℎ𝑚𝑖𝑛

Upper bound in SH 𝑠ℎ𝑚𝑎𝑥

Accepted bias in SH b
Acutuators current state vector 𝑂 ′

Target temperature 𝑇𝑥
Actual temperature 𝑇𝑎

Table 3: Scaling parameters in Milan and in ScaledHome.

where 𝑆𝐻𝑖 is the value inside the ScaledHome systemwith reference
to𝑀𝑖 . The same approach applies to different real-world scenarios
for reproducibility purposes.

This consideration was not enough to guarantee the correctness
of our mapping because the capabilities of the actuators used to
increase or decrease the temperature were not modular since they
have only a binary state. To address this issue, we defined a priori
an appropriate simulation time interval, which has to last enough
to simulate the highest temperature difference. We estimated the
duration of the simulation interval by interpolating the increasing
and decreasing regression functions. By doing so, both the lamp
and the fan have enough time to reach the target temperature. Then,
we applied hysteresis concepts to keep the temperature constant
whenever the system reaches the target before the end of the pre-
defined time interval. Formally, 𝑂 ′ does not change if 𝑇𝑎 is in the
range [𝑇𝑥 − 𝑏,𝑇𝑥 + 𝑏]. Once 𝑇𝑎 reaches 𝑇𝑥 + 𝑏, 𝑂 ′ will be set to
decrease the inside temperature and vice versa.

In addition to that, we introduced new temperature sub-goals
by applying inference on the data we already had. By doing so,
even if the temperature cannot be changed gradually, the trend is
more smooth, and it follows the real temperature more accurately. It
improves the smoothness of the temperature trend and the system’s
ability to adapt to changes in the corresponding real-world scenario
during the given time interval. In this regard, the simulation time
interval will change depending on the real-world situation we need
to simulate. A larger temperature interval will lead to a longer
time frame. Basically, instead of reaching the goal using the entire
available time interval, we divided each interval into multiple sub-
intervals obtaining at the same time the same number of sub-goals.
The approach adopted provides a flexible way to map real-world
scenarios in an easy-to-manage simulation environment.

Figure 6a and Figure 6b show as a final result a considerably
accurate mapping of real-world temperatures in Milan into the
ScaledHome temperature range. Also, we evaluate the improve-
ment achieved by applying hysteresis techniques at this time. In
particular, Figure 6a displays that the ScaledHome system, with-
out the usage of sub-goals, does not adjust its outside temperature
target quickly enough to catch the Milan temperature trend.

As can be seen in Figure 6b, the division of each goal into six sub-
goals leads to better matching between the real and the simulated
temperature. It is reasonable to think that the increase in the number
of sub-goals will guide to even more accurate matching.



(a) Without the adoption of hysteresis tech-
niques and zero sub-goals.

(b)With the adoption of hysteresis techniques and six
sub-goals for each temperature target.

Figure 5: Real and simulated temperature mapping with and without the adoption of hysteresis techniques and sub-goals.

(a) Without the adoption of hysteresis tech-
niques and zero sub-goals.

(b)With the adoption of hysteresis techniques and six
sub-goals for each temperature target.

Figure 6: Real and simulated temperature mapping with and without the adoption of hysteresis techniques and sub-goals.

4 IN-THE-FIELD EXPERIMENTAL
EVALUATION

Our goal consisted of finding a reliable machine learning model
that predicts a future state based on the current state inside the
house. This kind of forecasting is needed to select among all the
possible action vectors, which would reach the goal in the shortest
amount of time while minimizing energy consumption. In other
words, we want to change the inside state of the house, reducing
the usage of inside actuators such as the AC system and the heater.

To obtain a predictive model able to meet the aforementioned
requirements, four different machine learning regressors have been
trained:

• K-nearest neighbor (KNN)
• SVM regressor
• Deep Neural Model (DNN)
• Long short-term memory (LSTM)

While we developed the DNN model from scratch, the others
are provided in ready-to-use packages by scikit-learns and Keras.
In particular, scikit-learn offers the library containing KNN and
SVR, while Keras allows the developer to build the desired LSTM
network by configuring a built-in function. Regarding the DNN
model, we have identified five layers with 128 neurons each as best
hyperparameters. Besides, we selected the Huber loss and the Relu
activation function as the most suitable ones.



We fed those models with the same dataset collected by running
several simulations where we changed the outside metrics accord-
ingly to the scaled temperatures obtained from one day selected
from the Milan temperature dataset [2]. We also randomly altered
the state of the inside actuators, giving the models the knowledge to
learn the correlation between actuators state and the other interior
features.

In this regard, each record 𝑟𝑖 contains the features we considered
as inputs while the corresponding future state record 𝑟𝑖+𝑡 includes
the target features we wanted to predict. The 𝑡 value is a settable
parameter, as well as input and target features. We introduced this
kind of flexibility to consider some variables as hyperparameters
of the models since we do not know a priori which are the most
impactful ones for our predictive purposes.

Moreover, we studied the correlation between the different met-
rics inside the house for the same reason. In the following, Figure 7
and Figure 8 illustrate the relationship between inside temperature
and humidity. By doing so, we have been able to treat the inside
features as training parameters, by taking the most relevant metrics
as a starting point during the hyperparameter space exploration.
To explore the hyperparameter space, we developed an automated
greedy tuner able to find the most suitable ones for our purposes
(e.g., the best number of neighbors in K-nearest neighbors).

As regards to SVR, we had to combine one SVR model for each
target variable because it considers just one target value at the
time. Concerning DNN, we adopted a batching approach to speed
up computation. In that sense, we choose as batch size the same
𝑡 parameter used to identify the target records in the previous
models, exploring different sizes as we have done with the other
hyperparameters. We applied the same method to design the LSTM
network, exploring the batch size and the best sequence length.

Figure 7: Temperature heatmap.

For each implemented model, we considered both mean squared
error (MSE) and accuracy. Regarding the latter, we defined a tol-
erance range to validate the predicted value, increasing a score
variable every time our prediction was inside the tolerance range.

Figure 8: Humidity heatmap.

Since temperature is the main feature we predicted, and the accu-
racy of the available sensors is 1◦C, we set the tolerance range for
each actual target value 𝑦𝑖 to [𝑦𝑖 − 1, 𝑦𝑖 + 1].

With a dataset consisting of about 300 records, we identified
DNN as the model with the highest accuracy, achieving an accuracy
score of approximately 89%. While KNN and LSTM models reached
70% and 60%, SVR became the model with the lowest accuracy of
20%.

We then decided to increase the size of the dataset to find out
if LSTM would achieve better results. Since LSTM performs the
learning process on sequences instead of single values, we expected
to reach better performance with a more significant amount of
data. With approximately 4000 records, the best model was KNN,
which achieved about 95% accuracy, while SVR was still the worst
by barely reaching 20%. DNN performs almost the same, and LSTM
improves its score by an accuracy score of about 87%, as expected.

Table 4 reports the scores in terms of accuracy achieved by each
model, differentiating each of them by their score obtained through
training on either the only training set or the validation and training
sets merged.

Model 300 records 4000 records
KNN 70% and 71% (val.)* 95% and 96% (val.)*
SVR 42% and 47% (val.)* 22% and 19% (val.)*
DNN 79% and 63% (val.)* 89% and 88% (val.)*
LSTM 64% and 27% (val.)* 87% and 85% (val.)*

Table 4: MMmodels accuracy comparison.
(*) score achieved by training on training set and validation set merged.

We find that the most models are improving their accuracy with
more data. However, the SVR model has both a significantly lower
accuracy than the other models, and the accuracy decreases with
more data. A possible reason for this behavior is that the linear
model behind the SVR approach cannot represent the complex
nonlinear relationship between the inputs and output features.

Additionally, we simulate the recursive application of our predic-
tive model on already forecasted home states, by chaining multiple



predictions sequentially. To do that, we selected KNN as the most
accurate among the other models. Figure 9 shows the actual bed-
room temperature trend and the corresponding recursive prediction
obtained by our machine learning model. As can be seen, it follows
the real trend during the first 6000 seconds, and then it does not
accurately match it because the other related features deviate too
much from the actual behavior.

Figure 9: Bedroom temperature and recursive prediction.

1 def recursive_prediction(self , prediction_index):

2 x, y = self.data_set_parts['test']['x'], self.

data_set_parts['test']['y']

3 fig , ax = plt.subplots ()

4 #index of the column to be predicted

5 t6_index = 2

6 time_counter = 0

7 time = []

8 t6_y = []

9 y_hat_recursive = [x[0]. reshape (1,35)]

10 t6_y_hat = []

11 for index in range(0,x.shape [0]):

12 if (index % prediction_index == 0):

13 time.append(time_counter)

14 time_counter += 60

15 t6_y.append(y[index][ t6_index ])

16 temp = self.scaler.transform(self.predict(

y_hat_recursive[len(y_hat_recursive) -1]))

17 y_hat_recursive.append(temp)

18 for el in y_hat_recursive:

19 a = self.scaler.inverse_transform(el)

20 t6_y_hat.append(a[0][ t6_index ])

21 p1 = np.polyfit(time ,t6_y ,9)

22 p2 = np.polyfit(time ,t6_y_hat [:len(t6_y_hat) -1],9)

23 line1 , = ax.plot(time , np.polyval(p1, time))

24 line2 , = ax.plot(time , np.polyval(p2, time),'r-')

25 ax.set(xlabel='time (s)', ylabel='temp (ÂřC)', title=

'Bedroom temperature recursive prediction ')

26 ax.legend ((line1 , line2), ('Real temp', 'Forecasted

recursively '))

27 ax.grid()

28 plt.show()

Listing 1: Recursive prediction inside the ScaledHome
Experiment Management System.

Listing 1 shows how the recursive prediction of temperatures
works inside the ScaledHome Experiment Management System.

This kind of approach, combined with interpolation techniques,
can be taken into account when it is not possible to get recent data
at the same frequency as required by the action planner agent.

5 CONCLUSIONS
This paper describes the development of a predictive model for
smart home environments. We used ScaledHome, a small scale IoT
testbed for the simulation of real-world scenarios and collection
of data. Using this data, we trained a machine learning model that
can reliably predict the new environment states function of the
estimated current state and the actions taken by the actuators.

Future work will include the improvement of the predictive
capabilities of the model using future state-space exploration with
heuristics and reinforcement learning techniques. We also plan
to improve the testbed by adding new sensors measuring other
aspects of the smarthome environment and actuators modeling
user actions.
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