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Abstract—Four legged walkers are used by many elderly persons
to retain mobility. They are also used by patients recovering from
leg injuries to facilitate rehabilitation. Unfortunately, these walkers
are also associated with many injuries, some of which are caused by
incorrect use. In this paper, we describe a walker augmented with
IoT sensors which continuously monitors the weight distribution
on the legs of the walker. We describe an approach where this
data stream is processed by a deep neural network based classifier,
which learns to recognize dangerous use patterns that can lead to
falls and injury. The classifier is trained by providing examples
of unsafe use, thus eliminating the costly engineering necessary to
customize the algorithm to the specific user and walker. By alerting
the user in real time about unsafe use patterns, the user can learn
the correct and safe use of the walker.

I. INTRODUCTION

Four legged walkers are used by millions of people worldwide
both as a way for the elderly to retain mobility as well as a
rehabilitation tool for re-acquiring mobility after a trauma or an
accident. On the other hand, the use of walkers is also associated
with many injuries, falls and broken limbs. There can be many
reasons for such injuries. Patients might take risks relying on
the walker which they would not normally take. People might
also be distracted by the use of the walker, paying less attention
to their surroundings. While a walker reduces the weight load
on the legs and lower body, it increases the load on the hands
and the upper body. Although there is extensive literature on this
subject [1], there is no consensus on the relative weight of these
factors. What is clear, however, is that a significant fraction of
accidents is associated with the incorrect use of the walker.

We developed an IoT-augmented walker that continuously
collects sensor information from four weight sensors mounted
under the legs and a proximity sensor that measures the distance
of the user from the walker. The IoT augmented walker can
be used in multiple application scenarios - it can collect data
about the patient’s lifestyle, it can track compliance with the
prescription in the case of rehabilitation, and it can also act as a
real-time autonomous agent constantly monitoring the patient’s
use of the walker and providing feedback.

Considering the significant danger of falls and injuries as-
sociated with the use of a walker, one of the most important

features of such a device is to train users in the correct use of
the walker and to alarm them to possible unsafe use patterns.
Thus, the user can acquire skills that he or she can deploy also
on walkers without IoT augmentation.

One of the challenges in this task is the specification of
what constitutes unsafe use for a particular user and walker.
While there has been some research concerning the static and
dynamic equilibrium of a person using a walker or a cane [2], the
proposed models are too complex to be applicable in practice
to the calculation of whether certain usage patterns are safe
or dangerous. Beyond the difficulty of the physics involved, a
major problem in developing such a model is the fact that it
depends on the ability of the person to control his or her limbs
– a gait that is safe for a healthy person might be unsafe for a
person that has balance problems after recovering from a stroke.

In this paper we propose an approach where a deep neural
network learns to recognize unsafe usage patterns of the walker,
as labeled by the expert (such as a physical therapist). During
use, the resulting system can recognize these usage patterns
in real time, alerting the patient to dangerous situations. This
feedback can then be used by the patient to learn the correct
use of the walker and avoid dangerous situations.

II. RELATED WORK

Four legged walkers can be used to promote activity and
improve balance and mobility of elderly people [1], [3], in the
recovery phase for people after stroke or lower limb injury,
or to protect patients with balance problems from falling [4].
Furthermore, developing systems to help physical therapists
make more accurate and appropriate clinical decisions quickly is
effective in response to the needs of detailed health information
during rehabilitation [5], [6] [7]. Thus, walkers need to be safe,
comfortable, and easy to use.

The popularity of walkers opens the opportunity to add tech-
nological augmentations that can be used to monitor a number
of parameters of the users’ health condition. This resulted in the
development of several smart walker projects [8], [9], [10], [11],
[12], [13], [14], [15]. Most smart walkers measure parameters
such as weight distribution, posture and gait of the user. Some



smart walkers also capture physiological data, or record 2D or
3D images of the patient and the environment. Many recent
walker projects take advantage of client-server architectures that
allow the storage and post-processing of the data in the cloud.
Some smart walker projects also provide actuation capabilities,
representing a bridge towards assistive robotics and exoskeleton
technology. An exhaustive survey of the previous smart walker
projects is beyond the scope of this paper. In the following,
we briefly review several projects illustrating the diversity of
projects.

Spenko et al. [16] designed a smart walker that can record
the user’s activity level by using an ECG-based pulse monitor.
The system is able to calculate speed of the user and stride-
to-stride variability, and also gait asymmetry. The smart walker
can predict the likelihood of falls by using variability and gait
asymmetry. However, the complexity of the system and the type
of the data collected restricts the use of this system to scenarios
where physicians are present.

Hirata et al. [17] proposed RT Walker, a passive-type intelli-
gent walker which can distinguish walking, stop, and emergency
states by utilizing a laser range finder. RT Walker can estimate
the center of gravity of the user and compare it to the normal
distribution during walking.

Valadão et al. [18] developed a smart walker without any
attached sensors. By using a laser range sensor, the smart walker
is able to calculate the speed, position, and orientation of the
user inferred from the distance between the walker and the
user’s legs. The situations when laser sensor just detects one
leg implies the user might fall. There are other safety rules
for this walker which are high speed, backward movements,
obstacles, and counter exceeded limit that prompt the walker’s
safety supervisor to take actions to ensure the user’s safety.

Feltner et al. [19] developed a smart walker for visually
impaired individuals. They used the depth images captured by
Kinect RGB-D camera to predict the distance of the obstacles
to the user. They leveraged this information to detect obstacles
that may endanger the user.

The walkers augmented with laser range sensors are wheeled
walkers. Wheeled walkers are useful because the user does not
need to pick them up for each step and can easily move around
with it. On the other hand, four legged walkers are considered
the most stable of the conventional walkers and can be used for
people who do not have good balance [20].

III. HARDWARE AND SOFTWARE IMPLEMENTATION OF THE
IOT AUGMENTED WALKER

The IoT-augmented walker starts with an off-the-shelf four-
legged walker that has been augmented with sensors, computing
devices and user interface components (see Figure 1). Other than
a slight increase in weight, there is no change in the functionality
of the walker.

The weight distribution applied to the four legs of the walker
are captured by four load cells, each connected to a HX711
amplifier. The proximity of the user to the sensor is measured
using the VL53L0X time-of-flight laser ranging module. Finally,

orientation data is provided by the Adafruit BNO005 absolute
orientation sensor which combines a MEMS accelerometer,
magnetometer and gyroscope on a single die with an ARM
Cortex-M0 processor. We used these sensors as they are the
most common for fall prevention research [10].

The sensor data is collected by a Raspberry Pi-based main
computer housed in custom 3D-printed housing. The top of the
box serves as a display that provides feedback to the patient
using the device. The computer can connect to available WiFi
networks for real-time data upload (this is not necessary for
normal operation). The physical therapist can configure the
device either through WiFi or through a keyboard attached to
the USB port. The patient does not need to perform any other
interaction with the device except turning it on and off, and
recharging the battery with a standard charger. The internal
battery has 10000 mAh capacity and according to our testing,
the device can operate 12+ hours while the software is running.

The software running on the IoT-augmented walker must per-
form several distinct functions. In the background, it initializes
the sensors, and continuously collects data from them, performs
initial filtering, stores and, if required, uploads it to a centralized
web service. The web service is run on a dedicated server or
the cloud and is implemented using the Django Python-based
web framework [21]. This functionality is performed in the
background and does not require user interaction.

The user interacts with the IoT-augmented walker through
a simple visual user interface that provides continuous real-
time feedback to the user about whether it is using the walker
correctly and whether it follows the prescription.

IV. PREPROCESSING THE DATA STREAM

The stream of data as captured from the sensors on the
walker is extremely noisy, and in its raw form is not suitable to
be presented to the user or used as an input to higher level
algorithms. In this section we discuss the preprocessing we
apply to the raw data flow. The two steps of the preprocessing
are (a) filtering the sensor data for noise and (b) segmenting the
data stream into the individual steps taken by the patient.

The datastream collected by the load sensors contains noise
coming from multiple sources: the inherent noise of the sensor,
mechanical vibrations and deformations within the material of
the walker, imperfect contact between the feet of the walker
and the ground, and the changing load and possible tremor of
the user’s hand transmitted to the walker. We use a Kalman
filter to eliminate the Gaussian components of the noise which
occur primarily from sensor noise and vibrations. As Figure 2-
top shows, this makes the data significantly cleaner, but does
not completely eliminate the noise coming from the user’s hand
trying to adjust to the correct load distribution.

The second preprocessing step is the temporal segmentation
of the four independent data streams into steps. This is a
non-trivial challenge due to the asymmetric load of the legs,
the variability in the step sizes and noisy data. We define
the beginning of a step as the moment when the walker is
completely lifted up from the ground and the amount of pressure



Fig. 1. The IoT augmented walker from the point of view of the user (left), and a view of the available connections (right)

applied to the leg is in a local minimum. Due to the noise and
the temporal differences between the four data channels, there
are many local minima in the moment of transitioning between
the steps. The approach we take is based on applying a wavelet
convolution to the data with a range of wavelets of different
widths (1-20). We choose the minima that appears in the most
length scales with a sufficiently high signal to noise ratio. The
resulting segmentation is shown in Figure 2-bottom.

V. A NEURAL NETWORK CLASSIFIER FOR UNSAFE WALKER
USE PATTERNS

As we discussed in the introduction, we lack the formal
models to identify unsafe use patterns from physical principles.
Another possibility is building a model using knowledge en-
gineering – we would interview an expert such as a physical
therapist and build a model that captures the expert’s knowledge.
Unfortunately, it is difficult to express expert physiotherapy
knowledge in terms of four streams of noisy sensor data.

The approach we take is to train a deep neural network
classifier using supervised learning to distinguish between safe
and unsafe patterns of use. Supervised learning requires labeled
training data. As the four streams of sensor data are not
human comprehensible, in our data acquisition process we rely
on the synchronized recording of video and sensor readings.
During the data acquisition phase an experimenter, under the
instruction of an expert enacts both safe and unsafe modes of
utilization. A video of the experimenter and the sensor readings
are recorded with shared timestamps. At the labeling phase the
expert watches the video (with the possibility of slowdown and
rewind) and provides a label for the time slots in which the
walker was incorrectly used. These labels are then applied to
the sensor readings collected at the same timeslots.

We expect unsafe use patterns to happen with a lower rate in
comparison with the safe use patterns because normally subjects
try to avoid unsafe actions. We collected data in five different
sets of experiments to be able to create a balanced dataset. The

first set corresponds to correct and safe usage in which the user
is asked to step correctly with the walker. They are explicitly
told to be very careful to put all four legs of the walker together
on the ground. The next four set of experiments correspond
to unsafe use patterns. In the second set of experiments, the
subject is asked to put the rear legs first and then the front legs.
In the third set of experiments, we collect data while asking
the subjects to put front legs of the walker on the ground first
followed by rear legs. In the fourth set of experiments, the
subjects are asked to put two left legs sooner than two right legs
and vice versa for the fifth set of experiments. In all of these
experiments, the path which users follow is the same which is
a narrow round path around a table.

For each experiment, we collect sensors data as well as
video recordings. The expert then looks at the video and selects
the intervals which correspond to unsafe steps. Based on this
supervised information, we label the corresponding sensors’
reading data for that interval. We want the intervals which are
longer than 2.5 seconds, and we ignore the interval if its length
is shorter than 2.5 seconds.

During training, we have to sample data from all of these
experiments (i.e. four sets of unsafe patterns and one set of
safe patterns). We sample N intervals from each of the unsafe
patterns sets and 4×N intervals from the safe patterns set.

The input data to the classifier must have a temporal com-
ponent because unsafe use patterns, which usually deal with
conditions of dynamic equilibrium, cannot be identified from
single snapshots of sensor data. Thus, our input data will be a
window of 25 recordings (lines of data) from the four sensor
streams, creating an input vector of size 100. With a sampling
rate of 10Hz (because we store 10 recordings each second), this
corresponds to a 2.5 second interval for determining an unsafe
pattern. An alternative to this sliding window approach would be
the use of a classifier with memory, such as an LSTM recurrent
neural network, a possible choice that is beyond the scope of
this paper.
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Fig. 2. Preprocessing the raw data steam. Top: filtering the input signal using
a Kalman filter. Bottom: segmenting the steps taken by the user with a wavelet
transformation. In both figures, the target line shows the target load - this is the
value to which the minimums should be aligned if the walker is used according
to prescription.

The classifier is implemented as a feed forward fully con-
nected neural network with three hidden layers of 100, 50 and
50 neurons respectively and a ReLU activation function. For
better generalization, dropout layers are added between the fully
connected layers with a keep probability of 0.5. We also use
batch normalization in order to make the training phase faster
[22]. During the training we update moving average and moving
variance with respect to each mini-batch and keep track of
them for evaluation. We also use both centering and scaling.
The output layer has two neurons corresponding to recognized
safe and unsafe use patterns. The network was trained using the
Adam optimizer [23] and the cross entropy loss defined as

L(y, ŷ) = −E [y · log(ŷ)] (1)

where y is the actual label and ŷ is the probability vector of
each class generated by the network.

Note that even with the windowing technique, the classifier
provides a classification result every 0.1 seconds (every 0.1
seconds, we look at the last 25 records), a rate much higher
compared to the needs of the application as training feedback.
In early experiments, we also noticed that at this high data rate
we could not avoid the presence of occasional false positives
and false negatives in the data stream. Thus, we took advantage
of the high rate of data to perform additional processing on
the output stream of the classifier by applying a technique
of mathematical morphology, the n = 5 steps binary erosion
followed by the same number of steps of binary dilation of the
output signal treated as a temporal signal. This technique is
often used in computer vision for recognizing image shapes –
in this case we are using it in the temporal domain. If P is our
prediction signal, our processed prediction P̂ will be

P̂ = ((P 	M)⊕M) where M = [1, 1, 1]. (2)

VI. EXPERIMENTS

A. Data collection

We collected real world data from the IoT-augmented
walker for training and validation purposes. Six different
healthy subjects (two women and four men, height from 5′2′′

to 5′11′′, and weight from 93lb to 178lb) were instructed
to use the walker both in a safe and unsafe use patterns.
Unsafe use patterns included steps that are too long, highly
asymmetric load on the walker’s left or right side, dangling
legs, and putting the rear legs of the walker down first
then gradually lowering the front ones and vice versa.
During the experiments, the walker recorded measurements
in a plain text logfile in the format: {timestamp,
w_left_forward, w_right_forward,
w_left_rear, w_right_rear}, with the measurements
being recorded at a frequency of 10Hz. The values were
filtered and the steps separated using the algorithms mentioned
in Section IV. Additionally, we recorded a manual step
segmentation from an assistant who observed the process. The
experiments were also recorded on a video stream synchronized
to the timestamps on the walker. This video stream was later
used for the external labeling of the recorded data, which
added a boolean variable labeling the current recording as safe
or unsafe to the logs.

We collected 12398 data points. The data points were split
into training, validation and test data using a 80/10/10 ratio.
Every subject was asked to perform 6 experiments. The first
experiment corresponds to correct use of the walker. In the next
five experiments, the subjects were asked to perform one of the
unsafe patterns while walking. To ensure the desired distribution
of the safe and unsafe use patterns, the number of steps sampled
from each of these experiments were balanced such that the
number of safe steps are equal to the number of unsafe steps.
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Fig. 4. The training process of the classifier. Top: Training and validation
accuracy of the model with respect to the number of iterations. The diagram
also includes a baseline classifier that classifies every sample as safe. Bottom:
Evolution of the loss function with respect to the number of iterations.

Fig. 5. Precision-Recall curve for the classifier.

B. Training the classifier

The classifier described in Section V was implemented in
TensorFlow 1.7, and trained using the training data obtained as
above. As the network needed to capture the different unsafe pat-
tern modalities, its large number of parameters were also prone
to overfitting. We used the technique of early stopping [24] and
tracked the evolution of the validation error and loss through the
training process. Figure 4 shows the classification accuracy (top)
and the loss function (bottom) on the training and the validation
data set. We can see that after approximately 700 iterations (with
a mini-batch size of 64), the training loss continues to decrease,
but the validation loss has an upward trend. We saved snapshots
of the neural network, and retained the network at the point
when the validation loss started to trend upward.

C. Evaluation

The precision-recall curve of the trained classifier is shown
in Figure 5. As expected, the classifier is working, but it is not
particularly accurate. The reason for this is that the input is
noisy, but also the fact that the temporal labeling of an unsafe



movement pattern is somewhat arbitrary, and it might not exactly
match the beginning and the end of the unsafe behavior. Thus,
our quality criteria is not whether we can identify safe/unsafe
behavior at a 10Hz frequency, but whether we can flag steps
where unsafe behavior occurs and avoid flagging steps which
has been executed safely.

As we discussed in Section V, the temporal output of the
classifier is further processed with repeated steps of binary
erosion and dilation. The result of this process is illustrated
in Figure 3. The top graph shows the real labels assigned
by the experimenter. The middle graph shows the output of
the classifier – as expected, it shows both false positives and
false negatives. Finally, the bottom graph shows the classifier
results after the repeated steps of binary erosion and dilation.
We note that the bottom graph correctly identifies all the steps
that included unsafe behavior and does not classify any of the
safe steps as unsafe, although it does not always match the time
point where the transition from safe to unsafe and the reverse
happens in the original labels.

VII. CONCLUSIONS

In this paper, we described an approach that allows us to
detect unsafe use patterns in a four legged walker based on
sensor data collected from an IoT-augmented walker. We trained
a deep neural network based classifier over sliding windows
of the sensor streams. By feeding the classifier output into a
mathematical morphology based postprocessing unit, we were
able to identify unsafe steps with a high confidence. This data
can be used as a feedback mechanism for user training in a
clinic and more importantly elsewhere when the user uses the
walker alone without the presence of the physical therapist.

Future work includes validating the work with elderly or dis-
abled patients, determining whether the training model is valid
across patients and extending the ability to identify different
patterns of use. Furthermore, instead of alarming for incorrect
usage, we can provide feedback about how to correctly use the
walker.
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