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Abstract— Visually impaired individuals often employ canes or
guide dogs to help navigate complex environments. Individuals
who are both visually and mobility impaired encounter greater
difficulty, since conventional aids do not integrate well with walkers
or rollators. In this paper we propose a smart walker architecture
that is augmented with depth-sensing cameras that detect and
recognize obstacles that may endanger the user, as well as obtain
their distance from the user. This information is conveyed to the
user through a haptic interface on the walker. Our design helps
protect the user from colliding with obstacles in his/her path. In
comparison with traditional mobility methods, the smart walker
allows the user to navigate the environment faster and with less
physical and cognitive load. Compared to previous designs, our
approach completes this task at a significantly lower cost per unit.

I. INTRODUCTION

Navigating complex, unknown environments is an integral
part of human life, but for individuals with disabilities this
task is more challenging. Those in particular need of assistance
are individuals who are both mobility impaired and visually
impaired, a group which includes many elderly people. A report
by the World Health Organization [1] noted that 81.7% of blind
people worldwide are 50 years or older. In an analysis of the
2004 Health and Retirement Study [2], it was shown that 16% of
individuals 65 years or older reported use of a mobility device.
Unfortunately, conventional navigation aids for the blind are not
designed to be used in conjunction with traditional mobility aids,
such as walkers. A common technique for walker users who
are blind is to stop periodically and observe their surroundings
using a white cane, which is slow, tedious, and reduces their
mobility. Some visually impaired individuals need to be guided
by a sighted individual in order to get around, which decreases
the autonomy of the visually impaired individual.

In this paper, we propose a smart walker for the blind that
provides feedback about obstacles in the user’s path of travel.
This solution attempts to make the user safer, more mobile, and
less dependent on caretakers. In our design process, we had
several goals:

1) Create a solution that is lightweight, portable, and com-
fortable for the user. In order to ensure portability, all
processing should be completed on the device, since a
mobile network connection is not always assured. This
precludes networked and cloud-based solutions.

2) Provide feedback to the user about the distance to the
obstacles, rather than simply alerting her to the presence
of an obstacle.

3) Provide feedback to the user without the use of audio, to
avoid impeding the user’s sense of hearing [1].

4) Create a solution that is low-cost.
We describe two approaches for recognizing obstacles. The

first approach involves an analysis of depth images produced
by the Kinect RGB-D camera. The algorithm searches for
sudden changes in depth along the user’s assumed direction of
travel. We show that the low computational requirements of this
algorithm allows it to run on low-cost, low-power computing
devices, such as the Raspberry Pi. The second approach involves
processing a point cloud constructed from a depth image. This
approach differentiates between the floor plane and potential
obstacles in a point cloud, and segments the obstacles in the
cloud. For both approaches, the smart walker is able to recognize
obstacles and obtain the distance between those obstacles and
the walker.

The rest of this paper is organized as follows. In Section II, we
survey previous work in this field. In Section III, we describe the
design of our walker. In Section IV, we describe our proposed
approaches. In our first approach, we solve the problem of
identifying obstacles and finding their distance by processing
depth images. In our second approach, we employ point cloud
processing. Section V describes the evaluation of the proposed
solutions. Finally, in Section VI we conclude and offer possible
future improvements.

II. RELATED WORK

Several navigational aids have been proposed for visually im-
paired individuals, and there has been activity in employing the
Microsoft Kinect system in accessibility technologies. Orita et
al. [3] proposes a white cane device that uses depth information
from a Microsoft Kinect camera to detect obstacles in indoor
environments. If the user encounters an obstacle, the device
vibrates to alert the user. This reduced navigation time in their
study comparing the device’s performance to a conventional
cane. Since the device is held by the user, a significant portion
of their work is devoted to adjusting for the angle at which the
user holds the device. It was also noted that users found the
device to be heavy and its use to be fatiguing. Since our system
is mounted on a walker, we are able to avoid these issues.

The use of RGB-D cameras in wearable navigational aids
for the visually impaired has been previously investigated. In
Pham et al. [4], a system is devised to deliver a blind user
feedback on their environment using depth data produced by



the Kinect. The device is mounted on the abdomen of the
user, and a laptop computer backpack is worn. The system is
capable of identifying drops, objects, walls, and other potential
obstacles. Feedback to the user is provided using a sensory
substitution device called a Tongue Display Unit. While this
method produces robust detection results, and in this work we
employ a similar approach, the feedback method and heavy
materials could be considered unwieldy. In Wang et al. [5] a
wearable camera system recognizes objects in front of the user
and provides information about these objects through a haptic
belt and braille display. The use of Kinect to guide users is also
surveyed in Elmannai and Elleithy [6].

Several smart walkers for the visually impaired have been
proposed in the past. In MacNamera and Lacey [7], a smart
walker named PAM-AID is devised and evaluated. This smart
walker is capable of alerting the user to obstacles using vocal
feedback and taking control of the steering to automatically
avoid obstacles in the user’s path. In order to detect obstacles,
this walker uses an array of sonar sensors and laser ranging
devices. Yu et al. [8] propose a smart walker and smart cane
for the elderly and evaluate a shared control interface for the
device. The device is capable of avoiding obstacles and can
determine its location in a care facility by reading signposts
mounted on the ceiling of the facility. Paulo et al. [9] proposed
ISR-AIWALKER which focuses on safe navigation and allows
the user to maneuver the walker safely and avoid obstacles in
more complex environments.

The importance of this work is underscored by the fact that
there are also efforts to commercialize such a technology. PAM-
AID was further developed by Lacey and Diego Rodriguez-
Lousada of Haptica into Guido [10], which is a motorized
rollator employing sonar and laser ranging devices to avoid
obstacles. Guido also employs a simultaneous location and
mapping algorithm combined with an extended Kalman filter
(SLAM-EKF). SLAM-EKF allows the system to build a map
of its environment in real-time, making it capable of guiding
a user to a predetermined destination using a previously built
map. It is noted by the makers of Guido that an obstacle which
must be overcome in order to develop smart walkers further is
the reduction of sensor cost. In a joint project with Siemens,
a method to track moving objects and achieve simultaneous
localization and mapping (SLAM) using Microsoft Kinect is
proposed by Panteleris and Argyros [11] for the purpose of the
development of their c-Walker. The use of Microsoft Kinect in
the c-Walker and the employment of haptic feedback make the
c-Walker similar to this project.

Other groups have attempted to reduce sensor cost. In Chac-
cour et al. [12] a smart walker is proposed which detects
obstacles through IR and ultrasonic sensors, and alerts the user
to a collision through audio feedback. Since these sensors are
much cheaper than laser ranging devices, the total cost was
considerably lower than PAM-AID and Guido, but the use
of audio feedback can impede navigation by blind users. The
choice of sensors also precludes the generation of point clouds,

which is necessary to employ mapping algorithms such as those
proposed by Lacey and Diego Rodriguez-Lousada [10].

Our work joins others in the e-health field, such as Boudjit
and Moungla [13], where two fundamental mechanisms of
Wireless Body Area Networks (WBANs)–data dissemination
and sensor deployment–are reviewed, as they are intended to
provide benefits across various healthcare applications.

This project builds on our lab’s previous work in IoT aug-
mented walkers which provide feedback to users. In Zehtabian
et al. [14], a smart walker is proposed which provides feedback
to users to promote prescription compliance and proper walker
usage. In Khodadadeh et al. [15], the collected data stream has
been processed by a deep neural network classifier, so it can
learn to detect unsafe use patterns of the walker. The dataset has
been labeled as unsafe and safe patterns and the classifier can
predict the usage type (safe/unsafe) from the input data stream
in real time. Viegas et al. [16] presented a system to monitor the
usage of walker assistive devices for users to prevent dangerous
situations by guiding them to use the device correctly.

In this project, we seek a solution which is affordable,
portable, which can provide feedback without use of audio, and
which can alert the user to distance from obstacles, not simply
the presence of an obstacle.

III. DESIGN

As shown in Figure 1, our walker consists of a standard off-
the-shelf four-wheeled rollator with a Microsoft Kinect camera
mounted on the basket and angled towards the floor. The
Kinect power supply was modified to be connected to a 12V
DC rechargeable battery. Data processing is performed by a
Raspberry Pi computer in the first approach, and in the second
by a laptop computer. Vibration motors are attached to the
handles of the rollator, allowing the walker to provide feedback
to the user.

The use of the Microsoft Kinect sensor contributes towards
a low-cost design. Whereas in most previous approaches using
point clouds, the cost of sensors such as laser ranging devices
is on the order of thousands of dollars, while in this approach
the cost is on the order of tens of dollars.

The decision to use tactile over audio feedback is based on
the fact that for visually impaired people, the sense of hearing
is used to supplement the lack of eyesight while navigating.
Requiring the user to wear earphones could impede navigation
since it reduces their ability to hear ambient sounds. The
haptic feedback system categorizes obstacles into three groups:
close, mid-range, and far. Each category is assigned a different
vibration intensity, with far being the least intense and close
being the most intense. This allows visually impaired users to
determine the distance to an obstacle and judge the level of
danger an obstacle presents.

IV. PROPOSED APPROACHES

A. Background and Preliminaries

The Microsoft Kinect camera is an RGB-D camera, which
is able to produce both conventional color images (RGB) and



Fig. 1. The smart walker configured for the point cloud processing approach.

depth images. A depth image is a two-dimensional array of
values, where each value represents the distance in millimeters
from an object. This can also be represented as a grayscale
image, as in Figure 2, with darker colors representing closer
distances and lighter colors representing farther distances. Error
state values are represented by black regions. These pixels have
a value of zero, since no depth information was received by the
Kinect in these regions.

In a point cloud, each point is represented by its x, y, and
z values. These values represent the position of the point in
space. Using OpenNI and the Point Cloud Library (PCL), we
can construct a point cloud from the depth data produced by the
Kinect sensor. We can also use PCL to represent and process
point clouds [17].

A Raspberry Pi is a small, energy efficient Linux computer.
It can be powered via a MicroUSB connection from a battery
onboard the walker. Unlike a traditional personal computer, a
Raspberry Pi has General Purpose Input/Output (GPIO) pins,
making it capable of interfacing with devices such as LED
lights, motors, or sensors.

B. Approach 1: Depth Images

The use of depth maps to detect obstacles was based on the
work done by Ortigosa et al. [18]. In this approach, we assume
that in depth images with no obstacles, the depth will increase
at a steady rate with respect to the index from the bottom of the
image to the top of the image. In order to identify obstacles,
we first obtain a depth image from the Kinect sensor. Since we
are concerned with obstacles in the user’s path of travel, and we

assume that the user will be travelling forward in a straight line,
we concern ourselves with the vertical center line of the image.
In order to reduce noise and capture obstacles close to, but not
exactly in the center of the image, we then average depth values
in each row of a region in the center of the image, as shown in
Figure 3. In pixels where the Kinect cannot determine a depth,
an error state value of 0 is reported. We remove these error state
values from the image. Instead of using linear regression, we
simply iterate through the resulting array of values, calculating
the slope between each pair of points. An obstacle is identified
when a slope is negative, or is greater than a set threshold. This
indicates the existence of an obstacle, or a drop in floor level,
respectively.

Decreases or plateaus in depth values are indicative of obsta-
cles. Once we detect a negative slope, we iterate through the
array of averaged values beyond the detected anomaly to find
the minimum distance value. This ensures that we identify the
distance of the obstacle closest to the user while also segmenting
the region of the array that represents the floor.

Sharp increases in depth values are signs of a dangerous
decrease in elevation. In testing, this occurred when the Kinect
was placed directly in front of stairs going downwards. In this
case, we report the distance just before the jump as the distance
to the missing floor. Less extreme cases of elevation decrease,
such as a curb dropping off, also trigger increases in depth
values that need to be detected and reported to the user.

Algorithm 1: Finding Distance to Obstacles in a Depth
Image

1 image = getDepthImage();
2 removeErrorValues(image);
3 averageDepths[] = averageAcrossCenterColumn(image,

widthOfColumn);
4 for i = 0; i < averageDepths.length; i++ do
5 slope = averageDepths.differenceQuotient(i, difference);
6 if slope < negativeThreshold or slope >

positiveThreshold then
7 minimumIndex = 0;
8 maximumIndex = i;
9 return getMinimumDepthInRange(averageDepths,

minimumIndex, maximumIndex);
10 . Obstacle found at returned distance.

11 return null;
12 . No obstacle found.

C. Approach 2: Point Clouds

In order to recognize obstacles, we employ an approach
similar to that of Pham et al. [4]. We first use OpenNI and
PCL to generate a point cloud from distance data captured by
the Kinect camera. Since the user must be notified of obstacles
which might be in their path of travel, we remove points which
are outside of this path. Since the width of the walker is about



Fig. 2. Example of a color image (top), depth image (bottom left), and point cloud (bottom right).

Fig. 3. A depth image with an averaged column and resulting data displayed
as a Distance over Y-pixel graph.

70 cm, we remove points that lie beyond this width with a 5 cm
tolerance on each side. As the camera is mounted in the center
of the walker, we use a Pass-Through filter to remove points that
have x-values greater than 0.4 or less than -0.4; 40 centimeters
on each side of the camera. We also use a Pass-Through filter
to remove points with values of greater than 4.0 or less than
0.4 on the z-axis. This removes points farther than 4 meters or
closers than 40 centimeters from the camera, as these points lie
beyond the Kinect’s specified range of accuracy.

Since the size of a point cloud can be on the order of hundreds
of thousands of points, we must downsample the cloud in order
to reduce runtime. In order to downsample the cloud, we employ
a Voxel Grid filter with a leaf size of 1 cm.

We now need to differentiate between points which belong to
the floor and those which belong to obstacles. We assume that
the floor plane will be the largest plane parallel to the z-axis.
We use Random Sample Consensus (RANSAC) to determine
coefficients of a model of a plane parallel to the z-axis that fits
the largest such plane in the point cloud, and points within a
threshold distance from the plane model are considered inliers.
We then extract the points not included in the plane, which we
consider to be obstacles. If no points match this model of a
plane, this indicates that either a sudden drop or an obstacle
which blocks the majority of the camera’s field of view exists.
In this case, the user is warned of an obstacle at close range.
The segmentation process is shown in Figure 4.

As in Li et al. [19], if the number of remaining points



(a) Acquire Point Cloud (b) Voxel Grid Filter

(c) Pass Through Filter (d) Segmentation

Fig. 4. Demonstrating the segmentation process: (a) A point cloud is acquired from the Microsoft Kinect sensor using OpenNi and PCL. (b) A voxel grid filter
is applied to the image to downsample, improving run-time of the algorithm. (c) A pass-through filter is applied to remove points which are not in front of the
user or are outside of the specified accuracy of the sensor. (d) RANSAC is used to identify the coefficients of a plane equation for the largest plane parallel to
the z-axis. Points within a threshold distance from this plane are assumed to be part of the floor and are removed from the cloud.

are above a threshold value, we iterate through all points and
identify the minimum z value, which we consider to be the
distance from the obstacle. If the number of remaining points
is below a threshold value, the area is determined to be free of
obstacles.

V. RESULTS

The walker was evaluated on its ability to detect four types of
obstacles the walker users are likely to encounter on a daily basis
(see Table I). It was also evaluated on its ability to recognize
a path free of obstacles. The actual distance from the obstacles
to the walker were measured using a tape measure and were
compared to the distances reported by the walker software.

The walker was able to identify the distances from obstacles
to within 10 centimeters of the actual distance. Because we will
report this distance to the user at a granularity much greater
than 10 centimeters using haptic feedback, this is an acceptable
range of error for our purposes. It was also able to identify a
path free from obstacles, and a potentially dangerous drop.

The walker was not effective at identifying obstacles in
brightly sunlit environments. This is due to the fact that distance
is computed using an infrared sensor and emitter, and the
infrared rays from the sun corrupt the images produced by this

TABLE I
MEASURED DISTANCES

Obstacle Type Approach 1 Approach 2 Actual
None * * *
Wall 130cm 120cm 128cm
Drop + + +
Bottom of Stairwell 129cm 119cm 125cm
Item in Path 187cm 172cm 182cm

“*” denotes that the path is free of obstacles
“+” denotes a drop or close obstacle was identified

sensor. Therefore, the current design is most suited to indoor
environments, and additional work is needed to make the walker
perform well in outdoor environments.

An evaluation of the effectiveness of the haptic feedback
system was also performed (see Table II). The test compared
performance with a conventional rollator/cane combination with
our design in two different environments. The first sample
environment was an empty hallway, where the user had to avoid
collisions with the walls. The second one was a hallway with
obstacles placed in the path of the user, requiring the user to
use the aid to avoid the obstacles. The test subjects were sighted
individuals without mobility impairments. The eyesight of these



TABLE II
HAPTIC FEEDBACK EVALUATION RESULTS

Aid Type Environment Avg. Time Avg. Obstacles
Hit

Smart Walker Empty Hallway 2:47 5
Smart Walker Hallway w/ Obstacles 3:37 2
Walker/Cane Empty Hallway 3:02 3
Walker/Cane Hallway w/ Obstacles 1:53 0

subjects was blocked during the test. The time taken by these
individuals to traverse the hallway and number of obstacles hit
were measured.

The walker is most effective when navigating clear spaces.
Based on observation during the trials, it was determined that
the walker was not as effective in situations with many obstacles
since the walker does not provide information to the user about
the direction of the obstacle, or which way to go in order to
avoid the obstacle. A possible improvement could be to add a
“turn-signal” like system to convey an obstacle free direction of
travel to the user.

Furthermore, it was observed during the evaluation that the
presence of false positives in obstacle recognition slowed down
the users. While a cautious approach was taken to avoid the
presence of false negatives in obstacle reporting, false positive
results proved to be more confusing to the walker user than
originally anticipated. Increasing the threshold for false positives
makes it more difficult for the walker to operate in real-time,
so careful testing will be necessary to further improve the
performance.

VI. CONCLUSION

In this research, we have designed a smart walker capable of
identifying obstacles that a visually impaired user might collide
with, and obtain the distance from the obstacle to the user. We
found that the walker is capable of identifying this distance
with a sufficient accuracy to warn the user of the obstacle. We
have developed two methods of identifying obstacles. The first
approach analyzed depth images produced by the Kinect RGB-
D camera while the second approach involved processing a point
cloud constructed from a depth image.

Possible further research on this topic includes improving
the accuracy of the walker by creating a method of identify-
ing obstacles in sunlit environments, improving detection of
downwards drops, reducing false positive results, and improving
detections of obstacles parallel to the user. Improvements to
the usability of the walker include identifying the location of
obstacles relative to the user and signaling to the user a new
direction of travel free of obstacles, and eliminating the need
for a full-size laptop computer in order to run the approach
involving point clouds.
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