
Smart Walker for the Visually Impaired

Abstract
Navigation of environments is a complex challenge for individuals 
who are visually impaired, and these individuals are typically aided by 
tools such as canes or guide dogs. However, individuals who are 
both visually and mobility impaired encounter greater difficulty, since 
conventional aids do not integrate well with walkers or rollators. 
Current depth sensing cameras, when combined with affordable 
micro-computing devices, have the potential to aid such individuals. 
We propose a smart walker which can recognize obstacles which 
may endanger the user, as well as obtain their distance from the 
user. We then convey this information through a haptic interface on 
the walker.

Goals
1. Create a solution which is low-cost.
2. Create a solution which is portable, and comfortable for the user.
3. Provide feedback on distance from obstacles to the user.
4. Provide feedback to the user without use of audio since visually 

impaired individuals have a greater reliance on their sense of 
hearing for navigation.

Acknowledgements
The support for this work was provided by the National Science 
Foundation REU program under Award No. 1560302. Any opinions, 
findings, and conclusions and recommendations expressed in this 
material are those of the author(s) and do not necessarily reflect the 
views of the National Science Foundation. 

Jonathan Guilbe, Christopher Feltner, Sharare Zethabian, Siavash Khodadadeh, Lotzi Bölöni, and Damla Turgut
{jguilbe, chris.feltner, siavash.khodadadeh, sharare.zethabian}@Knights.ucf.edu, {lboloni, turgut}@cs.ucf.edu

Department of Computer Science
University of Central Florida 

Background
Microsoft Kinect is an RGB-D camera, making it capable of 
producing both color images and depth images. In a depth image, 
each pixel value is representative of the distance from the camera. 

We use Point Cloud Library (PCL) to create point clouds from 
distance information. A point cloud is an array of points with X, Y, 
and Z values in space. We use PCL to perform manipulation, 
filtering, and 3D perception operations on the cloud.

Raspberry Pi is a small-form computing device. It is extremely 
energy-efficient, but its processing capabilities are limited.

A scene captured in a color image, depth image, and point cloud (from left to right)

Methods
Approach 1 – Using Depth Images
• Create a Distance over Y-Pixel curve.
• Look for sudden changes in slope of the curve [2].
• Obstacles represented by decreases, stairs represented by large 

increases.

Approach 2 – Using Point Clouds

We use an approach similar to Pham et. al. [3], described in the figure 
below. As in Li et. al. [4], after processing we consider remaining points 
to be obstacles. If there are more points than our threshold value 
remaining, we identify the point with the minimum z-value as the 
obstacle distance.

2) Downsample

1) Acquire
PCL and OpenNI are used to generate 
a point cloud.

A Pass-Through filter is applied to 
remove points beyond our bounds. A 
Voxel Grid Filter is used to reduce the 
number of points, improving runtime.

3) Segment
RANSAC is used to segment the largest plane 
parallel to the z-axis. This is assumed to be the 
floor. The minimum z-value among remaining 
points is considered the closest obstacle.

Results

Future Work
Future goals include:
• Improving downwards drop and stair detection
• Creating a point cloud approach which can be run on an 

embedded device
• Implementing haptic feedback
• Find an alternative method for sunlit environments

1) Remove Error Values and Generate Curve
• Remove Kinect 

error state 
values

• Average across 
a column

• Store values as 
an array

2) Find changes in slope
• Iterate through the array, checking the slopes of pairs of points.
• Break from the iteration if the slope is larger or smaller than 

thresholds.

Environment Approach 1 Approach 2 Actual 
Distance

Empty Hallway * * *
Wall 130 cm 120 cm 128 cm
Downstairs + + +
Upstairs 129 cm 119 cm 125 cm
Box in Path 187 cm 172 cm 182 cm
• “*” Represents no obstacle found
• “+” Represents obstacle found at close range

In order to evaluate our methods, 
both approaches were used to 
detect obstacles at a known 
distance from the device.

In our evaluation, both methods 
were able to detect the presence 
of an obstacle, and were able to 
determine distance to within 10 cm 
of the actual distance.

An image of the walker

[1] S. Zehtabian, S. Khodadadeh, R. Pearlman, B. Willenberg, B. Kim, D. Turgut, L. Bölöni, and E. A. Ross. Supporting rehabilitation prescription compliance with an IoT-augmented four-legged walker. In Accepted to appear in 2nd Workshop on AI for Aging, Rehabilitation and Independent Assisted Living (ARIAL'18), July 2018.
[2] Nuria Ortigosa, Samuel Morillas, Guillermo Peris-Fajarnés, “Obstacle-Free Pathway Detection by Means of Depth Maps,” Journal of Intelligent Robotic Systems, vol. 2011, pp. 63:115-129
[3] Huy-Hieu Pham, Thi-Lan Le, and Nicolas Vuillerme, “Real-Time Obstacle Detection System in Indoor Environment for the Visually Impaired Using Microsoft Kinect Sensor,” Journal of Sensors, vol. 2016, Article ID 3754918, 13 pages, 2016. https://doi.org/10.1155/2016/3754918.
[4] B. Li, X. Zhang, J. P. Munoz, J. Xiao, X. Rong and Y. Tian, "Assisting blind people to avoid obstacles: An wearable obstacle stereo feedback system based on 3D detection," 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, 2015, pp. 2307-2311.


