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  The Loss-Sensitive Generative Adversarial 

Network Penalized with Gradient (LS-GAN-PG) 

is an improvement of LS-GAN that exploits the 

norm of gradient of loss function with respect to its 

domain as a mechanism to reduce the 

complexity of generative models and to 

decrease the chance of being over-fitted to the 

few training examples. The LS-GAN proposes a 

novel paradigm for training the classical GAN 

model that utilizes a loss function to quantify the 

quality of generated samples with constraint that 

cost of real images must be smaller than the 

cost of generated samples at least by amount of 

an adaptable margin between fake and real 

samples so the model can focus on improving 

poor ones (those with a higher loss margin value) 

  This is something the original GAN was not 

capable of doing – its learning was based on 

probability and a discriminator rather than a 

unique loss calculation. 

 

Generative Adversarial Networks – method of 

training generative models that utilizes a generator 

and discriminator which train & work against each 

other in a “minimax two-player game” [1] 

  

 

 

 

 

 

 

 

 
  

 Discriminator – 
  Reads in images 

1)   actual training samples 

2)   ‘false’ samples created by generator 

  Classifies them as ‘real’ (inputs) or ‘fake’ 

(generated) based off learning 

  Generator – 
  Tries to create images that will be labeled 

‘real’ by the discriminator – this becomes 

problematic in GAN learning 

  In LS-GAN, samples are improved based on 

G output loss margin; higher/lower loss value 

  Loss – value calculated between real & fake 

samples, quality level of generated samples 

  Our model “penalizes”/minimizes this value 

to better its accuracy, learning, convergence, & 

to regularize 

 

  Main Idea of LS-GAN:  

Lθ(x) ≤ Lθ(Gφ(z)) − ∆(x, Gφ(z)) 
 

 

  This constraint causes the model to prioritize samples 

with a higher loss value in improving generation quality 

• LS-GAN-PG applies gradient norm ||∇xL(x)|| 
as regularizer for the cost function to control the 

complexity of the generative model  

• We applied LS-GAN-PG to generate images of 

size   

• Generator Architecture  

 

 

 

 

 

 

• Cost model Architecture - Sequence of five 

layers of convolution with stride of 2 followed 

by batch normalization and Rectified linear 

function as nonlinearity  

• Training process 

• We used celebA dataset, a 

massive collection celebrity face 

photos. 

• Adam optimizer has been used to 

train the generator and cost model 

iteratively 

• Batch size of 64 

• Maximum number of training 

epochs is 24 
 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Generative Adversarial Network 

[1]  – proposal of generative network 

method of training in which a 

discriminative model works against the 

generative model in training, 

discerning between ‘real’ and ‘fake’ 

samples. The generator attempts to 

fool the discriminator by improving 

sample quality. 

  DC-GAN [2] – Deep Convolutional 

GAN that applies the batch 

normalization in generator to alleviate 

the vanishing gradient problem on 

deep models. Has a focus on 

unsupervised learning and use D as a 

feature extractor.  
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  Both the Tensorflow LS-GAN and 

LS-GAN-PG were able to run, learn, 

produce decent quality samples 

  Faster convergence in model with 

gradient penalty applied than without 

  Sample quality in the penalized LS-

GAN evened out and began to slightly 

decrease at around the eleventh 

epoch 

 Could be due to the penalty, 

regularization working 
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and generated sample (Gφ(z)) 
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Basic layout of DC-GAN architecture used. [2]  
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