
Penalized Loss-Sensitive Generative Adversarial Network
Emma Ambrosini

Department of Computer Science

Simmons College

emma.ambrosini@simmons.edu

 The Loss-Sensitive Generative Adversarial

Network Penalized with Gradient (LS-GAN-PG)

is an improvement of LS-GAN that exploits the

norm of gradient of loss function with respect to its

domain as a mechanism to reduce the

complexity of generative models and to

decrease the chance of being over-fitted to the

few training examples. The LS-GAN proposes a

novel paradigm for training the classical GAN

model that utilizes a loss function to quantify the

quality of generated samples with constraint that

cost of real images must be smaller than the

cost of generated samples at least by amount of

an adaptable margin between fake and real

samples so the model can focus on improving

poor ones (those with a higher loss margin value)

 This is something the original GAN was not

capable of doing – its learning was based on

probability and a discriminator rather than a

unique loss calculation.

Generative Adversarial Networks – method of

training generative models that utilizes a generator

and discriminator which train & work against each

other in a “minimax two-player game” [1]

 Discriminator –
 Reads in images

1) actual training samples

2) ‘false’ samples created by generator

 Classifies them as ‘real’ (inputs) or ‘fake’

(generated) based off learning

 Generator –
 Tries to create images that will be labeled

‘real’ by the discriminator – this becomes

problematic in GAN learning

 In LS-GAN, samples are improved based on

G output loss margin; higher/lower loss value

 Loss – value calculated between real & fake

samples, quality level of generated samples

 Our model “penalizes”/minimizes this value

to better its accuracy, learning, convergence, &

to regularize

 Main Idea of LS-GAN:

Lθ(x) ≤ Lθ(Gφ(z)) − ∆(x, Gφ(z))

 This constraint causes the model to prioritize samples

with a higher loss value in improving generation quality

• LS-GAN-PG applies gradient norm ||∇xL(x)||
as regularizer for the cost function to control the

complexity of the generative model

• We applied LS-GAN-PG to generate images of

size

• Generator Architecture

• Cost model Architecture - Sequence of five

layers of convolution with stride of 2 followed

by batch normalization and Rectified linear

function as nonlinearity

• Training process

• We used celebA dataset, a

massive collection celebrity face

photos.

• Adam optimizer has been used to

train the generator and cost model

iteratively

• Batch size of 64

• Maximum number of training

epochs is 24

 Generative Adversarial Network

[1] – proposal of generative network

method of training in which a

discriminative model works against the

generative model in training,

discerning between ‘real’ and ‘fake’

samples. The generator attempts to

fool the discriminator by improving

sample quality.

 DC-GAN [2] – Deep Convolutional

GAN that applies the batch

normalization in generator to alleviate

the vanishing gradient problem on

deep models. Has a focus on

unsupervised learning and use D as a

feature extractor.

 [1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B.

Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y.

Bengio, “Generative adversarial nets,” in Advances in

Neural Information Processing Systems, 2014, pp.

2672–2680.

 [2] A. Radford, L. Metz, and S. Chintala,

“Unsupervised representation learning with deep

convolutional generative adversarial networks,” arXiv

preprint arXiv:1511.06434, 2015.

 Image: https://github.com/carpedm20/DCGAN-

tensorflow

 [3] Guo-Jun Qi, “Loss-Sensitive Generative

Adversarial Networks on Lipschitz Densities”, arXiv

preprint arXiv:1701.06264, 2017

Acknowledgments - The support for this work

was provided by the National Science Foundation

REU program under Award No. 1560302. Any

opinions, findings, and conclusions and

recommendations expressed in this material are

those of the author(s) and do not necessarily

reflect the views of the National Science

Foundation.

Guo-Jun Qi

Department of Computer Science

University of Central Florida

GuoJun.Qi@ucf.edu

Marzieh Edraki

Department of Computer Science

University of Central Florida

M.Edraki@knights.ucf.edu

References

Background

Abstract Methods

Findings

 Both the Tensorflow LS-GAN and

LS-GAN-PG were able to run, learn,

produce decent quality samples

 Faster convergence in model with

gradient penalty applied than without

 Sample quality in the penalized LS-

GAN evened out and began to slightly

decrease at around the eleventh

epoch

 Could be due to the penalty,

regularization working

Discussion

Related Works

Difference between real input (x)

and generated sample (Gφ(z))

64´64

Basic layout of DC-GAN architecture used. [2]

LS-
GAN

LS-
GAN-

PG

Epoch 1 Epoch 4 Convergence Point

13

6

Epoch

Epoch

https://github.com/carpedm20/DCGAN-tensorflow
https://github.com/carpedm20/DCGAN-tensorflow
https://github.com/carpedm20/DCGAN-tensorflow
https://github.com/carpedm20/DCGAN-tensorflow
https://github.com/carpedm20/DCGAN-tensorflow

