
Exploitations of Wireless Interfaces via Network Scanning

Nathalie Domingo∗, Bryan Pearson†, and Yier Jin‡
∗ Department of Electrical and Computer Engineering, Carnegie Mellon University

†Department of Computer Science, Stetson University
‡Department of Electrical and Computer Engineering, University of Central Florida

ndomingo@andrew.cmu.edu, peabryan95@gmail.com, yier.jin@eecs.ucf.edu

Abstract—In brainstorming for ways to exploit Internet of
Things (IoT) security, we envisioned the following premise:
an attack which compromises the security of multiple wireless
interfaces. In this project, we attempt to reveal information about
a region of networks; this data includes each network’s location,
security, signal strength, and user activity. In exposing such data,
we hope to shed light on the security problems associated with
wireless networks.

I. INTRODUCTION

Network security is one of the most imperative areas of

computer security in the modern era. The number of devices

which require network access in order to function grows on

a daily basis; because of this, network protection is more

important than it has ever been before. Connecting wirelessly

to these networks has become standard among devices, thus

leading to the necessity of WiFi. Since it is no longer necessary

to physically connect to the network, more vulnerabilities arise

when dealing with wireless networks. In particular, more in-

formation, regarding both the network and the users, becomes

available, making it imperative to secure these networks [1].

This notion provides our largest incentive in creating our

attack; our long-term goal was to build something that would

affect a large number of users and emphasize the importance

of securing wireless networks.

The paper is organized as follows. Section II discusses the

current state of wireless networks and related applications.

In Section III we explain our initial attempts in creating this

device. The implementation of our final device is explained in

Section IV. The results from the test of the device is discussed

in Section V. Finally, conclusions are presented in Section VI.

II. STATE-OF-THE-ART

Wireless networks have become more popular as they have

many advantages over wired networks, but with the advan-

tages also come new security problems. The main difference

between wireless and wired networks is the way information

is transmitted. In order to get information from a wired

network, there must be a physical connection, while with a

wireless network, all data transmission is done through the

radio frequency, which allows for a lot more interceptions of

data [2]. While this poses a disadvantage over wired networks,

wireless networks are faster in terms of network configuration,

more cost effective and easier to integrate with already exist-

ing networks [1]. These tremendous advantages over wired

networks has led to their popularity and large interest in

wireless network security. The main focus of securing wireless

networks is on preventing unauthorized access, eavesdropping,

and tampering of transmitted messages [3].

Some efforts have already been made to standardize WiFi

security, which has led to WEP, WPA, and RSN standard

protocols. All of these protocols are aimed at encrypting data

in an attempt to prevent the security risks associated with

transmitting sensitive information over the radio frequency.

Wireless Equivalent Privacy (WEP) was created so that wire-

less networks would have the same security as wired networks.

This protocol, given enough time and effort, can be broken,

thus leading to the WPA standard. WiFi Protected Access

(WPA) serves as an improvement over WEP in terms of data

encryption, user authentication, and error detection. While this

protocol is an improvement, when passphrases consisting of

less than 20 characters are used, which is considered common,

the network is more open to attacks. Lastly, in order to

accommodate the improvement in wireless device capabilities,

Robust Security Networks (RSN), or WPA2, was created as the

final wireless security solution. The main improvement over

WPA is that it facilitates the communication between wireless

access points and wireless devices through a new encryption

and authentication scheme [2].

Despite all the efforts to enhance wireless security, wireless

networks still broadcast sensitive information, something that

we exploit in the device explained in this paper.

There are various applications available that collect network

information, most of which rely on using a mobile device. Two

applications that fall into this category are WiFi Collector [4]

and OpenWebGIS [5]. WiFi Collector is an Android app that

collects various information about the available wireless net-

works. The information collected includes the network name,

the signal level, and the location and time the information

was taken, which is then displayed in a list format in the app,

all of which is exportable to external mapping applications.

OpenWebGIS has more features than WiFi Collector, as it can

be used to collect and map any type of data. As of 2016,

OpenWebGIS has a detected WiFi access points option which

collects various information and then maps it. The information

collected includes the SSID, the coordinate point of where the

information was taken, the address of the access point, the

authentication and encryption schemes, and the data and time

the data was collected. Chosen information is then available

in list format and coordinate points are viewable automatically

on a map.

Although these applications are available, they have mostly

been created with the purpose of helping people keep track

of where they can connect to networks. While the device we

propose in this paper has a similar data collection aspect, it is

aimed at exposing security vulnerabilities in wireless networks

by showing the amount of sensitive information that networks

reveal, all of which is displayed in a user friendly way.

III. INITIAL ATTEMPTS

In order to access the Raspberry Pi while outside, it was

necessary to turn the Pi into an AP (access point) since there

was not an available network on which we could SSH into the

Pi. When turning the Raspberry Pi into an AP, the main issue

encountered was trying to maintain the Pi’s built in functions,

such as WiFi and Ethernet. The first attempt at doing this

disregarded the fact that the data collection script required

the use of WiFi, and thus the configure AP on the built in

WiFi had to be removed. Instead the AP was created via a

WiFi dongle. Once the dongle was used, more problems arose

as the built in WiFi, necessary for the data collection script,

and Ethernet, necessary for testing purposes, stopped working.

This problem was fixed by reverting configuration files to their

original state and paying close attention to the configurations

that were changed when repeating the process.

Additionally, we encountered problems with communicating

with the GPS module. The network data needed to be mapped

out, so it was essential to know the location of the Raspberry Pi

when the data was being collected. A GPS module provided

this information, but proved difficult to communicate with.

The GPS module was connected to the Pi via UART, but

because a newer Pi was utilized for this project, there was

a lack of documentation on which port corresponded to the

serial port. Documentation for an older model was used and it

identified the /dev/AMA0 port as the designated serial port.

When testing the GPS, it was determined that this was not the

correct serial port and that it was actually being used for the

built in Bluetooth, a feature in only the newer model. Thus, it

was important to figure out the correct serial port to in order

to communicate with the GPS, an essential component in our

project.

IV. IMPLEMENTATION

A Raspberry Pi 3 model B running the Raspbian Jessie

kernel version 4.4 and an Adafruit Ultimate GPS Breakout

module was used in this project to carry out the objective.

The Raspberry Pi was used as a means to communicate with

the GPS and to collect data about the available APs, while the

GPS was used to determine where the data point was collected.

In order to amplify the GPS’s ability to correctly capture its

coordinates, an external antenna was used. The Raspberry Pi

must first be remotely accessed via the AP created through the

WiFi dongle attached to the Pi in order to run a Python script

that collects all the data on the available networks and writes

it to a CSV file. Afterwards, a second Python script must be

ran that converts the outputted CSV file to a KML file which

can be viewed on a map. Figure 1 shows the Pi and GPS setup

used to collect data.

Fig. 1: Device set-up used to collect data about the available access points

By using the WiFi dongle, the Raspberry Pi can act as

an AP, which can then be connected to by any computer,

thus allowing for access to the Raspberry Pi through SSH

or a tightVNC viewer. Since this version of Raspberry Pi

has a built-in WiFi module, configurations regarding the WiFi

dongle had were made to affect wlan1, instead of wlan0. The

first step to doing this is setting up a DHCP server which

allows WiFi connections to automatically get IP addresses.

Next, wlan1 must be given a static IP, and the AP credentials

must be created through the hostapd program. Lastly, in

order to automate this process, i.e. to ensure that the AP will

be available automatically when the Pi boots up, a daemon

must be set up that enables both hostapd and the DHCP

server. Additionally, in order to allow access to the Pi’s Internet

connection via the AP, the network address translation must be

configured. After the AP is configured and after connecting to

the network created, the Pi’s command line was available via

SSH and the desktop through a tightVNC viewer. In order to

be able to see the GUI through a tightVNC viewer, a tightVNC

server must be set up on the Raspberry Pi. This too can be

automated by placing the necessary commands in the Pi’s

/etc/rc.local file.

In order to map out the network information, it was essential

to be able to grab the coordinates of where the network

data was collected. In order to do this, an Adafruit Ultimate

GPS Breakout was used. Every time data was collected, the

coordinates of the Pi were taken from the GPS module. This

was done by connecting the GPS to the correct pins in the Pi’s

UART header and then setting up communications between

the two. Communication was set up by enabling UART

communication and starting the GPS daemon, gpsd, on the

correct serial port, which in this case was /dev/serial0
or /dev/ttyS0. Additionally, although the GPS is powered

through the Pi, a coin cell was used to allow the GPS to get

a better signal, as per the manufacturer’s suggestion.

The first stage of our attack involves executing the data

retrieval script, which will ultimately output a CSV file that

we can later use. The script, written in Python, must run in

root in order to execute many of the required commands. The

program starts by creating an empty CSV file with writing

privileges so that we can append data to the file later. The

script immediately writes a single line to the CSV file which

contains the headers of each category. This is because each

datum in the first line of a CSV file is always interpreted as

the header of that respective column (refer to Figure 5 for an

illustration). Following this, the script asks the user to input

the total length, in minutes, that the script should run; after

this time has passed, the program will automatically terminate.

In addition, the script will ask for the wait time before it

reconnects to APs that have already been accessed; in other

words, if the script connects to an AP named Access, the

script will have to wait n minutes (n being the input from

the user) before connecting to Access again. The delay is

implemented in order to force the script to connect to a variety

of APs, because the network scanner will, by default, connect

to the AP with the strongest signal. However, the delay also

ensures that we can still collect multiple samples from the

same network to obtain more accurate data.

Once the user inputs these settings, the script enters a

loop which will continuously acquire and append data to

the CSV file until the program eventually terminates. The

loop first determines whether the script should terminate by

checking if enough time has passed; if not, it continues. Next,

it checks whether enough time has passed for the delay to

reset. If enough time has passed, the timer resets, and the

string containing all inaccessible APs is cleared, allowing

reconnection to those APs; otherwise, the script continues.

Before scanning for nearby networks, the script will first

attempt to capture the latitude, longitude, and date information

from the GPS module that was attached beforehand. The script

communicates with the GPS by first opening a serial port in

the location /dev/serial0 with a baud rate (the speed at

which the GPS transfers its data) of 9600 bits per second. The

port must then flush its input buffer contents, since the buffer

updates automatically. Flushing the buffer is critical, as this

will ensure that we only receive the newest reading from the

GPS. After flushing the contents, we then attempt to read the

next line of the buffer stream, which is presumed to be the

most recent line. If this line exists, we parse it into a readable

format using the Python library pynmea2. The script then

uses the parsed format to obtain the latitude and longitude of

its position, as well as the time that it retrieved this data. One

caveat of this process is that the GPS takes a short moment

to add data to its buffer, meaning it will usually take several

attempts before we can recognize the data. Therefore, we use

another loop to repeatedly poll whether we can recognize the

buffer data; once we can, we retrieve the GPS data and exit

the loop. Otherwise, after fifty attempts, the script will set the

contents for GPS data as “not found;” this would most likely

occur due to a weak GPS signal.

Next, the script attempts to ensure that the wireless interface

is permitted to scan for APs. To achieve this, the script

communicates with the Linux terminal via the os library, and

running the popen command, allowing it to specify a terminal

command and to save its return value. We run the termi-

nal command iwlist wlan0 scan 2>/dev/null |
grep ESSID, which will return the IDs of all nearby APs.

If scanning is not permitted, then the command will return

a blank string, in which case the script resets the wireless

interface and runs the command again, until eventually it

returns at least one SSID. To reset the interface, we run the

terminal command ifconfig wlan0 down to shut down

the interface, and ifconfig wlan0 up to start it back up.

Scanning permissions are generally enabled by default when

the interface reboots, although its occasional inconsistencies

mean that we must always recheck for scanning permissions

before connecting to another AP.

Once the script has finished checking the scan permissions,

it obtains the SSID of the next available AP. To accomplish

this, we run the scan command mentioned previously, and

obtain the first AP that does not appear in the string containing

the list of inaccessible APs. We must also ensure that the script

ignores the WiFi dongle attached to the Raspberry Pi (we

simply ignore the AP if it has the SSID “PiAP”, which is the

name of the WiFi dongle). Once we have acquired the SSID,

we can retrieve the encryption type and signal strength of the

network, as well as the number of devices connected to the

network - assuming it is an open AP. To obtain the encryption,

we scan the network similarly as before, albeit with one

key difference: iwlist wlan0 scan 2>/dev/null |
egrep ‘ESSID|Encryption’. In this command, the ter-

minal returns the SSID of all nearby networks along with

their encryption settings - an encryption of “off” signifies

an open network, while an encryption of “on” signifies a

closed network. We compare our acquired SSID to each

SSID in the return value until a match is found, and then

we grab the corresponding encryption. The process of ob-

taining the signal strength is nearly identical, except the

command is now iwlist wlan0 scan 2>/dev/null
| egrep ‘ESSID|Quality’. Signal strength of WiFi is

measured in dBm (decibel-milliwatts), where a dBm of -30

indicates the strongest achievable strength and a dBm of -90

and below indicates a very weak connection.

As mentioned before, we will only attempt to retrieve the

number of devices connected to the network if it is not

encrypted. This is because we use Address Resolution Protocol

(ARP) scanning to retrieve this information, which requires a

network connection in order to function. ARP is a protocol

that can determine a MAC address from a given IP address.

By “scanning” the network, ARP sends message packets to

all hosts on the network, and essentially counts how many

of those hosts receive the packet. To connect to the network,

we run the terminal command iwconfig wlan0 essid
[ID], where][ID] corresponds to our network SSID. This

command will configure the wireless interface such that we

can specify which network to associate with. Afterwards,

we run the command arp-scan --interface=wlan0
--localnet to send ARP packets to all hosts on the

network. This will return a list of hidden IP address that we

Fig. 2: The process the data collection script goes through

Signal Category dBm Range Color

Very Strong >= -50 Dark Green

Good <-50 and >= -65 Light Green

Weak <-65 and >= -80 Yellow

Poor <-80 Red

TABLE I: A chart showing the signal categories and their corresponding signal
strength range and color

can count up in order to determine the number of connected

devices. This method of retrieving device count data, while

occasionally serviceable, is quite inefficient.

The final step in the script is a simple matter of appending

gathered information to the CSV file created earlier. After-

wards, the script begins at the start of the loop, and the process

repeats. An illustration of the script is provided in Figure 2.

After creating the CSV file with all of the data, it is

converted into a KML file through a Python script. The script

first parses the CSV file produced and sorts the data based

on the network. Two dictionaries are kept to keep track of

various information that must be sorted by network. The first

dictionary keeps track of all the coordinates that belong to

the same signal category. The signal categories were created

in order to be able to create a map that resembles a contour

map. All of the coordinates belonging to the same category,

either poor, weak, good, or strong, are connected and colored

in to create a polygon that is colored based on the signal

strength. Table I is a chart with the signal categories and

their corresponding signal strength ranges and polygon colors.

This is done to be able to differentiate where the signal is the

best and to get the closest representation of where the access

point originates, which is where the signal is the strongest.

Additionally, the same dictionary keeps track of the network’s

average information, which includes the most number of users,

least number of users, average number of users, encryption,

and the timestamp of when the last data point was taken.

On top of having the different polygons representing each

Fig. 3: The process the CSV to KML script goes through

signal level, each data point is also individually mapped in

order to easily display the individual data points collected. The

second dictionary is used to keep track of all the points that

must be written to the KML file. Instead of creating a KML

point after parsing through the CSV file, the point is created

while going through the rows in the CSV file. KML points

are created by creating a placemark, and then specifying the

point coordinates. Additionally, in order to attach a textbox,

the style of the textbox and the actual text, which is referred to

as a description, has to be specified. The placemark created for

each individual point is what is saved in the dictionary, which

then makes it easy to write it to the KML file according to

the network it belongs to.

After parsing through the CSV file, each network is written

to the KML file as a new layer. Within each network layer,

polygons are first created referring to the signal category and

then every corresponding data point is written. The polygons

are created by creating a placemarker, and then within the

placemarker specifying the polygon style, which includes

the signal category color and that it should be filled in.

After specifying the style, the polygon is actually created by

specifying the coordinates that should be connected and to

clamp the polygon to the ground. Lastly, in order to have

a text box pop up when the polygon is clicked on, the text

style and the actual text description must be specified. This

KML file can then be read by Google Maps and Google

Earth. The best viewing platform for the number of layers

that are most likely will be created is Google Earth, where

each layer can be individually viewed and overlapping points

can be viewed independently on the map. Figure 3 shows the

complete process the python script goes through to convert the

CSV file to a KML file.

V. EXPERIMENTAL RESULTS

In order to test out our implementation, we collected data

around the University of Central Florida (UCF). We took a

shuttle that went around the perimeter of the campus and

collected 322 data entries, each consisting of the network

ESSID, the encryption, the signal strength, latitude, longitude,

Fig. 4: First 18 lines of the CSV file produced from the data collection script

Fig. 5: All the layers of the data collected shown in Google Earth

user count, and the time. When we were collecting data, we ran

into problems concerning the method used for determining the

user count of the network. Specifically, the script would pause

for a very long time, causing us to not be able to collect data

and have a huge gap between the consecutive coordinates. We

were concerned that this would continue to happen and that

it would result in us not having a very representative map, so

we removed the user count method and simply have the user

count for every network be 0. Figure 4 shows an excerpt of

the CSV file produced from the data collection script.

Since the campus shuttle moved slowly, we were able to col-

lect multiple coordinates for each network with varying signal

strengths, allowing for quite a few data polygons. Additionally,

most of the coordinate points were not overlapping, which is

ideal when looking at multiple networks on the same map.

Although the data polygons cover most of the UCF campus,

it is not an accurate depiction of available access points within

the campus. Data was only taken along the perimeter, and thus

these maps are not a good representation of the entire campus.

Overall, the results were as we expected and serve as an initial

test of the capability of the device created. After mapping the

collected data to Google Earth, the experimental results are

shown in Figures 5, 6, and 7.

VI. CONCLUSION

In this paper we have described a project that should be

treated as a first step in a much larger attack. The project

involves collecting informative data about the available net-

works and displaying that information in an easily viewed

Fig. 6: One layer isolated in Google Earth and typical text box

Fig. 7: One layer isolated in Google Earth and individual data point text box

platform. The data collected includes the network names, the

encryption status, and ideally, the number of users. Then, in

order to give a realistic picture as to where the networks are

available, a contour-like map is created to display the signal

strength, along with the network data collected, by utilizing

a GPS breakout board. This project can be used to figure out

the best network to attack, something that is important when

creating and deploying an attack that will affect the most users.

VII. ACKNOWLEDGMENT

The support for this work was provided by the National

Science Foundation REU program under Award No. 1560302.

Any opinions, findings, and conclusions and recommendations

expressed in this material are those of the author(s) and

do not necessarily reflect the views of the National Science

Foundation.

REFERENCES

[1] M.-k. Choi, R. J. Robles, C.-h. Hong, and T.-h. Kim, “Wireless network
security: Vulnerabilities, threats and countermeasures,” International
Journal of Multimedia and Ubiquitous Engineering, vol. 3, no. 3, pp.
77–86, 2008.

[2] H. I. Bulbul, I. Batmaz, and M. Ozel, “Wireless network security:
comparison of wep (wired equivalent privacy) mechanism, wpa (wi-fi
protected access) and rsn (robust security network) security protocols,” in
Proceedings of the 1st international conference on Forensic applications
and techniques in telecommunications, information, and multimedia and
workshop. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2008, p. 9.

[3] H. Boland and H. Mousavi, “Security issues of the ieee 802.11 b
wireless lan,” in Electrical and Computer Engineering, 2004. Canadian
Conference on, vol. 1. IEEE, 2004, pp. 333–336.

[4] Http://www.nirsoft.net/android/wifi collector.html.
[5] Http://openwebgisystem.blogspot.com/2016/01/creating-wifi-map-and-

monitoring-access.html.

